Comparison of biomechanical risk factors for ACL injury between patients and healthy subjects during exergaming

Keywords: exergaming, kinematics, lower body, injury, rehabilitation

Abstract

Introduction

Exergaming - physically active gaming - offers great potential for rehabilitation after knee injuries in sports, as it combines physical and cognitive challenges. However, before its use in sports rehabilitation can be recommended as safe and reliable, it is necessary to assess the biomechanics associated with knee injuries - an abducted, internally rotated knee at 10-30° of flexion (Koga et al., 2010). The aim of this study was to compare knee valgus (KV) during 10-30° knee flexion between healthy individuals without previous knee injuries and patients undergoing rehabilitation after knee injuries in three exercises of a high-intensive, immersive exergame (ExerCube).

Methods

The kinematics of 18 healthy subjects (25.2 ± 3.3 years, 9 female) and 6 patients (25.0 ± 5.9 years, 2 female) were recorded using marker-based movement analysis (Vicon) during 25 minutes of exergame training (Sphery Racer, ExerCube). The average maximum KV angle during 10-30° knee flexion was compared between healthy subjects and patients in the squat, jump, and burpee for the right leg using a linear mixed model.

Results

The average maximal KV in the squat was 4.3° for healthy subjects and 4.8° for patients. In the jump, an average maximal KV of 5.9° (healthy subjects) and 6.8° (patients) was found. With an average of 6.9° in the maximal KV of healthy subjects and 8.6° in patients, the burpee showed the highest KV of all exercises. A significant main effect was found for exercise (F(2, 45) = 57.03, p < .001), but not for the difference between groups (F(1, 22) = 0.45, p = 0.51).

Discussion/Conclusion

There are no significant differences in KV between healthy participants and patients undergoing rehabilitation after knee injuries. This indicates that the pre-injury movement pattern was restored in the patients, and it can be assumed that the studied exercises during exergaming are safe for use in this stage of rehabilitation.

References

Koga, H., Nakamae, A., Shima, Y., Iwasa, J., Myklebust, G., Engebretsen, L., Bahr, R., & Krosshaug, T. (2010). Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. The American Journal of Sports Medicine, 38(11), 2218–2225. https://doi.org/10.1177/0363546510373570

Published
06.02.2024
How to Cite
Haas, M. C., Martin-Niedecken, A. L., Wild, L., Schneeberger, L., & Graf, E. S. (2024). Comparison of biomechanical risk factors for ACL injury between patients and healthy subjects during exergaming. Current Issues in Sport Science (CISS), 9(2), 045. https://doi.org/10.36950/2024.2ciss045