Slow waves during deep sleep support cardiac function

  • Stephanie Huwiler Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich https://orcid.org/0000-0001-8894-4871
  • Manuel Carro-Domínguez Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich https://orcid.org/0000-0003-2644-8594
  • Fabia Stich Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich https://orcid.org/0000-0001-9692-845X
  • Rossella Sala Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich
  • Florent Aziri Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich https://orcid.org/0009-0003-9770-8864
  • Anna Trippel Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich https://orcid.org/0000-0003-2104-083X
  • Tabea Ryf Department of Cardiology, University Heart Center Zurich, University of Zurich
  • Susanne Markendorf Department of Cardiology, University Heart Center Zurich, University of Zurich https://orcid.org/0000-0002-9115-4667
  • David Niederseer Department of Cardiology, University Heart Center Zurich, University of Zurich https://orcid.org/0000-0003-3089-1222
  • Philipp Bohm Department of Cardiology, University Heart Center Zurich, University of Zurich https://orcid.org/0000-0001-9232-7518
  • Gloria Stoll Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich
  • Lily Laubscher Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich https://orcid.org/0000-0001-6449-2313
  • Jeivicaa Thevan Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich
  • Christina M. Spengler Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich & Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich https://orcid.org/0000-0002-4598-3595
  • Joanna Gawinecka Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich https://orcid.org/0000-0003-3859-0934
  • Elena Osto Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich https://orcid.org/0000-0001-8196-5696
  • Reto Huber Center of Competence Sleep & Health Zurich, University of Zurich & Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich & Child Development Centre, University Children’s Hospital, University of Zurich & Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital Zurich, University of Zurich https://orcid.org/0000-0002-1400-9466
  • Nicole Wenderoth Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich & Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich & Future Health Technologies, Singapore-ETH Center, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore https://orcid.org/0000-0002-3246-9386
  • Christian Schmied Department of Cardiology, University Heart Center Zurich, University of Zurich https://orcid.org/0000-0001-5701-0697
  • Caroline Lustenberger Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich & Center of Competence Sleep & Health Zurich, University of Zurich & Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich https://orcid.org/0000-0001-6243-8831
Keywords: sleep, left-ventricular function, slow waves, auditory stimulation

Abstract

Introduction

The role of sleep in cardiovascular health, particularly the impact of deep non-rapid eye movement (NREM) sleep, is gaining interest in the prevention of cardiovascular diseases (Grandner et al., 2016). Essentially slow waves, prominent brain oscillations during deep sleep, seem to represent an important cardiovascular recovery process for the human body. However, to date, the specific mechanisms through which sleep affects cardiovascular function and whether slow waves accelerate recovery remain elusive.

Methods

Here, we explored the role of slow waves in promoting cardiovascular function. In this randomized, cross-over trial involving 18 healthy male participants (Huwiler et al., 2023), we investigated how experimentally enhancing slow waves via auditory stimulation (Huwiler et al., 2022) impacts cardiovascular dynamics during sleep and next-day cardiac function, assessed via an echocardiography. All participants underwent three experimental nights including two conditions for slow wave enhancement and one SHAM control condition while brain oscillatory, blood pressure, and cardiac dynamics were continuously measured during sleep.

Results

Using a linear mixed-effect model approach, we found auditory stimulation to significantly increase slow wave activity (F(2, 33.095) = 11.397, p < 0.001) during times of stimulation. This slow wave enhancement coincided with a dynamic cardiovascular activation, indicated through short increases in blood pressure and a biphasic heart rate response. After sleep, we found a significant increase in general longitudinal strain (F(2, 34) = 81.17, p < 0.001), an increase in left-ventricular ejection fraction (F(2, 34) = 4.55, p = 0.018), and a decrease in E/e’ ratio (F(2, 34) = 3.38, p = 0.046) for both slow wave stimulation conditions compared to SHAM.

Discussion/Conclusion

We show that slow wave stimulation induces a cardiovascular activation response possibly related to increasing cardiovascular stability during sleep (De Zambotti et al., 2016). Moreover, we demonstrate that slow wave stimulation enhances left-ventricular systolic and diastolic function, both together indicating improved cardiac function. Altogether, this points towards the functional involvement of slow waves in promoting cardiovascular health. Therefore, sleep slow wave stimulation may be considered a potential supplementary method in treating cardiovascular diseases involving decreased left-ventricular function. Furthermore, our findings hint that enhancing slow waves could potentially optimize post-exercise recovery processes and increase cardiovascular well-being.

References

De Zambotti, M., Willoughby, A. R., Franzen, P. L., Clark, D. B., Baker, F. C., & Colrain, I. M. (2016). K-complexes: Interaction between the central and autonomic nervous systems during sleep. Sleep, 39(5), 1129–1137. https://doi.org/10.5665/sleep.5770

Grandner, M. A., Alfonso-Miller, P., Fernandez-Mendoza, J., Shetty, S., Shenoy, S., & Combs, D. (2016). Sleep: Important considerations for the prevention of cardiovascular disease. Current Opinion in Cardiology, 31(5), 551–565. https://doi.org/10.1097/HCO.0000000000000324

Huwiler, S., Carro-Domínguez, M., Stich, F. M., Sala, R., Aziri, F., Trippel, A., Ryf, T., Markendorf, S., Niederseer, D., Bohm, P., Stoll, G., Laubscher, L., Thevan, J., Spengler, C. M., Gawinecka, J., Osto, E., Huber, R., Wenderoth, N., Schmied, C., & Lustenberger, C. (2023). Auditory stimulation of sleep slow waves enhances left ventricular function in humans. European Heart Journal, 44(40), 4288–4291. https://doi.org/10.1093/eurheartj/ehad630

Huwiler, S., Carro Dominguez, M., Huwyler, S., Kiener, L., Stich, F. M., Sala, R., Aziri, F., Trippel, A., Schmied, C., Huber, R., Wenderoth, N., & Lustenberger, C. (2022). Effects of auditory sleep modulation approaches on brain oscillatory and cardiovascular dynamics. Sleep, 45(9), 1–36. https://doi.org/10.1093/sleep/zsac155

Published
06.02.2024
How to Cite
Huwiler, S., Carro-Domínguez, M., Stich, F., Sala, R., Aziri, F., Trippel, A., Ryf, T., Markendorf, S., Niederseer, D., Bohm, P., Stoll, G., Laubscher, L., Thevan, J., Spengler, C. M., Gawinecka, J., Osto, E., Huber, R., Wenderoth, N., Schmied, C., & Lustenberger, C. (2024). Slow waves during deep sleep support cardiac function. Current Issues in Sport Science (CISS), 9(2), 004. https://doi.org/10.36950/2024.2ciss004