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A B S T R AC T

Recommended multidimensional models for talent selection are difficult to implement for practi-
tioners in the field. Furthermore, their application has not been established from a scientific point of 
view, with a lack of clarity concerning how to integrate manifold test results with respect to loading, 
interaction, and compensation phenomena. Consequently, the question of powerful single predic-
tors for future player status are still of interest within talent research in order to determine promising 
content for less extensive selection procedures. The aim of the current study is a comparison of the 
prognostic validity of two frequently used areas within talent selection in youth football: physiologi-
cally driven general motor performance (GMP) capacities (40m sprint, agility, counter movement 
jump, Yo-Yo intermittent recovery test) and domain-specific motor performance (SMP) capacities 
(i.e., technical skills; dribbling, passing, juggling, shooting). The area under the curve (AUC) from the 
receiver operating characteristic was used to compare the prognostic validity of both motor perfor-
mance areas at early and middle adolescence (predicting U20 player status: 17 professional vs. 116 
non-professional players at U13/U14; 23 vs. 62 at U16/U17). Although no comparison at the four 
different age levels led to a significant difference (.07 ≤ p ≤ .65), there was a continuous superiority 
of SMP over GMP in descriptive AUC values (.04 ≤ ΔAUC ≤ .14). These descriptive differences reached 
relevant extent within early adolescence (ΔAUCU13 = .09; ΔAUCU14 = .14) and were partially accounted 
for by the influence of biological maturation (.31 ≤ r ≤ .50 between maturation and performance in 
40m and counter movement jump). In line with theoretical considerations and earlier research, these 
results provide further evidence of the superiority of SMP over GMP in predicting future player sta-
tus. Until the applicability of multidimensional models is further established, SMP rather than GMP 
should be included in less extensive talent selection models, especially in early adolescence. 
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Introduction

Although early talent selection may result in the loss of certain 
potential talent, the tremendous popularity of youth football 
and limited resources within clubs and associations turn this 
unwanted procedure into a necessity. To minimize the risk of 
false selection decisions, research has advocated the use of 
multidimensional approaches which should maximize prog-
nostic validity in terms of predicting the future player status 
of young talents with data from childhood or adolescence 
(Sieghartsleitner, Zuber, Zibung, & Conzelmann, 2019; Vaeyens, 
Lenoir, Williams, & Philippaerts, 2008). In their fundamental 
work on these approaches, Williams and Reilly (2000) suggest-
ed more than 25 potential predictors of talent in football and 
grouped this “shopping list of key criteria” (p. 658) into socio-
logical, physical, physiological, and psychological dimensions. 
This pioneering work had significant impact and several re-
searchers have subsequently executed multidimensional work 
on talent in football (Figueiredo, Gonçalves, Coelho-e-Silva, & 
Malina, 2009a; Forsman, Blomqvist, Davids, Liukkonen, & Kont-
tinen, 2016; Huijgen, Elferink-Gemser, Lemmink, & Visscher, 
2014; Vaeyens et al., 2006; Zuber, Zibung, & Conzelmann, 2016). 
However, there has been no scientific study or practical imple-
mentation that has integrated all of the suggested predictors 
from the work of Williams and Reilly (2000). Therefore, whilst 
conducting multidimensional measurements sounds promis-
ing, extensive data collection for talent selection may have cer-
tain limitations.
Beyond the obvious economic aspects, statistical consider-
ations of common linear methods versus non-linear alterna-
tives turn the inclusion of several variables within multidimen-
sional modelling into a meaningful problem. In both statistical 
approaches, extensive models with high numbers of variables 
increase the probability of obtaining results that are difficult 
to interpret. For example, multicollinearity leads to unclear 
explanations of variance, whereby the loading and weighing 
of single variables also becomes unclear (Backhaus, Erichson, 
Plinke, & Weiber, 2018). Furthermore, a specific problem of 
linear statistical models is that they are enslaved by the gen-
eral relations of “the higher (or lower) x, the higher (or lower) 
y” (Maszczyk et al., 2014). They may therefore fail to represent 
possible interaction and compensation phenomena between 
different talent predictors within developing talents (Conzel-
mann, Zibung, & Zuber, 2018; Meylan, Cronin, Oliver, & Hughes, 
2010). Non-linear alternatives such as artificial neural networks 
and person-oriented approaches also face certain problems, 
particularly regarding impossible comparisons of different sta-
tistical model configurations, or difficulties in interpreting the 
obtained results (Pfeiffer & Hohmann, 2012; Pion, Hohmann, 
Liu, Lenoir, & Segers, 2017; Zibung, Zuber, & Conzelmann, 2016; 
Zuber et al., 2016). Indeed, since an artificial neural network is a 
kind of black box, the process behind the emergence of its re-
sults is hidden, and imposes a questionable blind explanation 
of an effect without prior insight into the processes that cause 
this effect (Zhang et al., 2018). On the other hand, person-ori-

ented methods only manage to overcome interpretative diffi-
culties by compromising part of their holistic aspiration: To be 
able to deliver interpretable clusters, they must be restricted 
to a relatively small number of variables, and therefore to less 
extensive models; i.e. four to six so-called operating factors (e.g., 
the Linking of Clusters after removal of a Residue (LICUR) meth-
od; Bergman, Magnusson, & El-Khouri, 2003; Bogat, von Eye, & 
Bergman, 2016). Overall, therefore, no satisfying solution is cur-
rently available for integrating extensive data collection into 
practical talent selection decisions on single players (such as 
whether to include a player in a talent development program).
As economic and methodological reasons hinder the imple-
mentation of multidimensional talent selection models to a 
certain degree, there is a need for less extensive solutions; i.e., 
models with a smaller number of integrated variables. In this 
context, the search for the most powerful predictors of later 
performance grows in importance. If current talent selection 
models can only handle a limited number of variables, this rais-
es the question of which areas provide the most powerful way 
of discriminating between future performance levels of elite 
youth players, and which variables are worthy of inclusion in 
these less extensive models (e.g., a person-oriented model with 
four to six operating factors).
In general, motor performance has been one of the most con-
sidered predictors within talent research in youth football and 
is also frequently used by practitioners in the field (Höner, Leyhr, 
& Kelava, 2017; Sarmento, Anguera, Pereira, & Araújo, 2018). 
Whilst the overall value of motor performance for talent selec-
tion is not doubted, it is unclear whether physiologically driven 
general motor performance (GMP) capacities (e.g., speed, en-
durance, vertical jump) or domain-specific motor performance 
(SMP) capacities (i.e., technical skills) best predict future perfor-
mance levels of young football players (Dodd & Newans, 2018; 
Forsman et al., 2016; Gonaus & Müller, 2012; Höner et al., 2017; 
Murr, Raabe, & Höner, 2017). In particular, the prognostic validi-
ty of GMP for long-term predictions from childhood or early ad-
olescence has been vigorously questioned due to lower speci-
ficity of the task and development-related influences such as 
biological maturation and relative age, which may at least influ-
ence strength and speed abilities (Lidor, Côté, & Hackfort, 2009; 
Malina, Cumming, Coelho-e-Silva, & Figueiredo, 2017; Müller, 
Gonaus, Perner, Müller, & Raschner, 2017; Romann, Rössler, 
Javet, & Faude, 2018). For that reason, the SMP, which is more 
likely to be maturity-unbiased, is thought to provide higher 
prognostic validity than GMP, although the measurement reli-
ability of the former is generally lower (Höner, Votteler, Schmid, 
Schultz, & Roth, 2015; Lidor et al., 2009; Vaeyens et al., 2008).
On the question of the prognostic validity of GMP versus SMP, 
the amount of relevant research is limited. As Murr, Feichtinger, 
Larkin, O’Connor, and Höner (2018) showed in their review, 
only the studies of two working groups can report on long-
term prognostic validities (i.e., more than four years) of both 
GMP and SMP. Forsman et al. (2016) presented data from Finn-
ish U14 players, which were used to predict player status at U19 
level (elite vs. sub-elite, n = 114). SMP (dribbling and passing, 
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passing and centering; dmean = 0.73) and GMP (30m sprint, agil-
ity, vertical jump, and endurance; dmean = 0.67) separated groups 
with similar strong effect sizes on average. In reports on the 
German football talent identification and talent development 
program, GMP is reported by means of 20m sprint and agility, 
SMP with tests for dribbling, ball control, and shooting (Höner 
et al., 2015). Within U12 data, dribbling and ball control show 
highest effect sizes (η2 = .02, n = 22,843) for discrimination be-
tween the performance levels of players at the middle and late 
adolescent stages (U16-U19; Höner & Votteler, 2016). A second 
study, also within U12 data, reports a higher prognostic validity 
for SMP (η2

mean = .010) compared to speed abilities (η2
mean = .006) 

in predicting adult performance levels (n = 14,187; Höner et al., 
2017). In a third study, the working group was able to show that 
the 20m sprint was the only variable that did not significantly 
separate adult performance levels within U12 to U15 data (n = 
1,134; Leyhr, Kelava, Raabe, & Höner, 2018). 
In summary, research on the predictive values of GMP versus 
SMP for talent selection in youth football has produced some 
empirical results and certain theoretical considerations. How-
ever, an immediate pairwise comparison of the prognostic va-
lidity of these two areas of motor performance within longitu-
dinal study designs is still missing. As methodological reasons 
hinder the use of multidimensional approaches with many 
variables, this comparative knowledge on the prognostic rel-
evance of certain variables at different age groups seems to be 
necessary to facilitate the choice of predictors for less extensive 
talent selection models. For that reason, the aim of the current 
investigation was to research whether GMP or SMP showed 
higher prognostic validity within talent selection in different 
stages of youth football (early and middle adolescence).

Methods

Participants

The current research is part of the longitudinal project Talent 
Selection and Talent Development in Swiss football, which fol-
lowed players born in 1999 throughout the talent promoting 
system of the Swiss Football Association by using various tests 
including notably measurements of the motor performance 
area (Sieghartsleitner et al., 2019, 2018; Zibung et al., 2016; Zu-
ber et al., 2016). The current contribution used a total sample 
of 195 male players. During the season 2018/2019, 31 of these 
players (15.9%) participated in the first to third league within 
Switzerland or were nominated for the Swiss U20 junior nation-
al team (i.e., 15.9% were classified as professional players). The 
remaining 164 players took part in the fourth league or below 
and were classified as non-professionals. The total sample con-
sists of two groups. A first group of 133 players (17 profession-
als, 12.8%) volunteered to participate in motor performance 
tests at early adolescence (U13/U14 age categories). A second 
group of 85 players (23 professionals, 27.1%) went through the 
same tests at middle adolescence (U16/U17 age categories). 

The two groups include 23 players (9 professionals) who par-
ticipated in early and middle adolescence; hence in all four age 
groups. As the selection level increases through the ongoing 
talent promotion system, the U16/U17 group includes a higher 
percentage of professional players than the U13/U14 group (χ2 
= 7.06, p < .05). The study received approval from the Ethics 
Committee of the Faculty of Human Sciences of the University 
of Bern and all players and their legal representatives provided 
their written informed consent to participate.

Measures

During a single season, players participated twice (autumn and 
spring) in a test battery consisting of eight variables to deter-
mine motor performance. The season’s performance was calcu-
lated using the mean value of both tests. If one of the two mea-
surements was missed (e.g., through injury, sickness, or school 
activities), the other served as the test score for the age catego-
ry (19.4% of cases). As there was only one difference (shooting 
at U14 age group; p = .03) between players with either one or 
two participations within 32 comparisons (eight tests at four 
age groups; t-Test; false discovery rate adjusted alpha level of 
significance from Benjamini and Hochberg (1995):  α = .044) 
and similar procedures are common within long-term develop-
ment analysis in football, this procedure was considered to be 
appropriate (Gonaus & Müller, 2012; Höner et al., 2015).
GMP was operationalized by the following four tests. Firstly, 
a 40m sprint was conducted with a twin photoelectric sensor 
(Microgate, Bolzano, Italy) at the starting and finishing line (rtt 
= .96; Zuber et al., 2016). Secondly, for an agility test, players 
took a short sprint, ran around three poles with a change of 
direction, and repeated these actions mirror-inverted before 
finishing (Höner et al., 2015). As in the sprint test, twin photo-
electric sensors measured times (rtt = .83). Thirdly, in a vertical 
counter movement jump test (without arm swing), the highest 
value of five attempts served as the test score (Myotest, Sion, 
Switzerland; ICC = .96; Casartelli, Muller, & Maffiuletti, 2010). Fi-
nally, the Level 1 Yo-Yo intermittent recovery test measured the 
intermittent endurance performance (rtt = .93; Bangsbo, Iaia, & 
Krustrup, 2008).
SMP was measured by means of an additional four tests. A drib-
bling test was executed with the same trajectory as the agility 
test, the only difference being that it was performed with a ball 
instead of without a ball (rtt = .56; Höner et al., 2015). Secondly, 
a passing test was adapted from the passing test used by Höner 
et al. (2015). In this test, players passed the ball from a confined 
zone against four walls in turn, one in each direction. After the 
fourth pass, the same sequence was repeated in reverse order 
(reaching nine passes). Time served as the test score and was 
measured manually with stopwatches (rtt = .68; Zuber et al., 
2016). Thirdly, a juggling test required players to juggle along a 
course shaped like the figure 8 (left and right foot alternately). 
Players scored a point for each quarter of a circle they complet-
ed. The test was stopped after 45 seconds or, alternatively, as 
soon as a mistake was made (e.g., one foot twice in succession, 
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discriminative power of this classification (Robin et al., 2011). 
To proof BLR models for superiority over a baseline model and 
for fitting of the data, a likelihood-ratio test (Omnibus tests 
of model coefficients) and the Hosmer-Lemeshow test were 
conducted (Hosmer, Lemeshow, & Sturdivant, 2013; Zeileis & 
Hothorn, 2002). For both tests, the alpha level for significance 
was set at α < .05. According to the corresponding null hypoth-
esis, superiority over a baseline model was indicated by α < .05 
(Omnibus tests of model coefficients) and an appropriate fit of 
the data by means of α > .05 (Hosmer-Lemeshow test).
As a next step, the likelihood of each individual being catego-
rized as a professional or non-professional player from BLR was 
used to create the ROC. The resulting area under the curve 
(AUC; an index for measuring the quality of classification), was 
used to compare the GMP and SMP models using the DeLong 
non-parametric test (DeLong, DeLong, & Clarke-Pearson, 1988; 
Robin et al., 2011). Again, the alpha level for significance was 
initially set to α < .05. Due to the comparison between the clas-
sification models at each age group level, the false discovery 
rate was used to appropriately adjust the alpha level of signifi-
cance for multiple testing (Benjamini & Hochberg, 1995)
Compared to the use of BLR only, ROC offers beneficial descrip-
tive values of correctly identified talents (sensitivity), correctly 
identified non-talents (specificity), and an overall percentage 
of all correct selection decisions (accuracy; Robin et al., 2011). 
Each of these three descriptive values can be calculated for 
each single point on the ROC curve to describe the effective-
ness of a certain discrimination threshold. According to these 
discrimination thresholds, an additional benefit of ROC over 
BLR and its setting of a fixed threshold is the search for the 
most powerful discrimination threshold, known as the Youden 
index (Youden, 1950). The Youden index describes that point 
of the ROC curve where the sum of sensitivity and specificity 
is maximized, and therefore may represent the most efficient 
talent selection threshold for inclusion in a talent development 
system.
Finally, to examine potential maturational influences on motor 
performance, the relationship between each performance test 
and the biological maturation indicator was estimated by using 
Pearson correlations. Again, the alpha level for significance was 
set to α < .05 and the false discovery rate was used to adjust for 
multiple testing (Benjamini & Hochberg, 1995).

Results

Tables 1 and 2 provide an overview of the descriptive charac-
teristics of the measured variables for professional and non-
professional players. According to the results of the BLR analysis 
(see Table 3), only three models were significant (Omnibus tests 
of model coefficients: p < .05) and also appropriately calibrated 
(Hosmer-Lemeshow test: p > .05). These were the SMP models 
at the U13 (p < .01, p = .60, Nagelkerkes R2 = .22) ; the U14 (p < 
.01, p = .65, Nagelkerkes R2 = .23); and the U16 age groups (p 
= .03, p = .42, Nagelkerkes R2 = .17). Whilst the SMP model at 

the ball touching the ground or any other part of the body). The 
number of points served as the test score (Höner et al., 2015), 
reaching a rtt = .79 (Zuber et al., 2016). Finally, in a shooting test, 
players had to shoot eight times into target zones of the goal (2 
targets, 2 feet, 2 attempts). Successful shots on the target were 
subjectively rated by speed on a three stage scale (low, medi-
um, or high speed denote 1, 2, or 3 points), and the test score 
was the overall number of points (rtt = .31; Höner et al., 2015).
The protocol for the test battery was standardized (warm-up, 
order of tests, trained team of testers) and it was executed on 
dry synthetic turf only. For the 40m sprint, agility, dribbling, 
passing, and juggling tests, the better of two attempts was 
used for data analysis. For the all-out Yo-Yo intermittent recov-
ery test, only one attempt was possible.
Finally, an adult state prediction was assessed along with the 
eight motor performance tests to obtain an indicator of biolog-
ical maturation by means of the percentage of predicted adult 
height (Sherar, Mirwald, Baxter-Jones, & Thomis, 2005).

Data Analysis

Due to missed, incorrect, or aborted attempts, 1.0% of all val-
ues were missing in the U13/U14 dataset (6.8% cases showed 
missing data; Little’s missing completely at random test: χ2 = 
109.0, df = 88, p = .06). In the U16/U17 dataset, 3.8% of the val-
ues were missing (20.0% cases showed missing data; Little’s 
missing completely at random test: χ2 = 131.0, df = 96, p = .01). 
As missing values can lead to unwanted distortions in statistical 
analysis (e.g., biased parameter estimates and reduced sample 
size) and Little’s test showed that current data points were 
missing at random rather than missing completely at random, 
multiple imputation with m = 10 imputations and a maximum 
of k = 10 iterations was carried out by means of the R pack-
age mice to impute missing values (Jekauc, Völkle, Lämmle, & 
Woll, 2012; Little, 1988; Stuart, Azur, Frangakis, & Leaf, 2009; 
van Buuren & Groothuis-Oudshoorn, 2011). All variables in the 
dataset were defined as predictors as well as imputation vari-
ables. After creating the complete datasets, all of the following 
data analysis procedures were conducted for each of the im-
puted datasets. Finally, the results of point estimates (mean of 
the estimates from completed datasets) and interval estimates 
(considering the within- and between-imputation variance of 
the completed datasets) were pooled with reference to Rubins’ 
Rule (Jekauc et al., 2012).
The first step in data analysis calculated two classification mod-
els per age group to predict U20 player status (professional or 
non-professional): one for GMP (40m sprint, agility, counter 
movement jump, Yo-Yo intermittent recovery test) and one for 
SMP (dribbling, passing, juggling, shooting).
To calculate the likelihood of each individual being catego-
rized as a professional or non-professional player, each of the 
models used robust classification from binary logistic regres-
sion (BLR) in R (Antonogeorgos, Panagiotakos, Priftis, & Tzonou, 
2009; R Core Team, 2017). The subsequent receiver operating 
characteristic (ROC) from the R package pROC determined the 
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Table 1: Means (±standard deviation) for professional players (PP) and non-professional players (NPP) for measured items in U13 / 
U14 age groups.

U13 U14

Item PP 
(n = 17)

NPP 
(n = 116)

Total 
(n = 133)

PP 
(n = 17)

NPP 
(n = 116)

Total 
(n = 133)

Age 
(years) 12.52 ± 0.36 12.57 ± 0.32 12.56 ± 0.32 13.56 ± 0.32 13.56 ± 0.33 13.56 ± 0.33

Height
(cm) 152.7 ± 5.0 153.9 ± 8.0 153.8 ± 7.7 160.2 ± 6.5 160.5 ± 8.2 160.5 ± 8.0

Weight 
(kg) 41.8 ± 5.4 42.8 ± 7.1 42.6 ± 6.9 48.8 ± 6.5 48.0 ± 7.9 48.1 ± 7.7

Maturation 
(% adult 
height)

84.95 ± 1.35 85.08 ± 1.99 85.06 ± 1.91 88.94 ± 2.54 88.59 ± 2.77 88.63 ± 2.73

40m sprint 
(sec) 6.54 ± 0.28 6.61 ± 0.36 6.60 ± 0.35 6.48 ± 0.34 6.41 ± 0.34 6.42 ± 0.34

Agility 
(sec) 8.20 ± 0.32 8.18 ± 0.32 8.18 ± 0.31 8.15 ± 0.25 8.11 ± 0.29 8.11 ± 0.28

CMJ 
(cm) 28.8 ± 2.3 30.2 ± 3.7 30.0 ± 3.6 29.3 ± 2.8 31.1 ± 3.9 30.9 ± 3.8

Yo-Yo 
(m) 905 ± 251 890 ± 284 892 ± 280 1123 ± 408 1100 ± 353 1103 ± 349

Dribbling 
(sec) 10.21 ± 0.49* 10.76 ± 0.80 10.69 ± 0.78 10.07 ± 0.42 10.33 ± 0.60 10.29 ± 0.58

Passing 
(sec) 17.21 ± 1.65* 18.39 ± 2.06 18.24 ± 2.06 15.86 ± 1.35* 16.84 ± 1.70 16.72 ± 1.69

Juggling 
(points) 4.7 ± 3.8* 3.0 ± 3.1 3.2 ± 3.2 11.3 ± 5.4* 5.9 ± 5.0 6.6 ± 5.4

Shooting 
(points) 9.0 ± 2.7* 7.4 ± 2.8 7.6 ± 2.8 10.1 ± 3.3 8.5 ± 2.6 8.7 ± 2.7

Note: CMJ = counter movement jump; Yo-Yo = Level 1 Yo-Yo intermittent recovery test; * = different from NPP (t-Test, p < .05)
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Table 2: Means (±standard deviation) for professional players (PP) and non-professional players (NPP) for measured items in U16 / 
U17 age groups.

U16 U17

Item PP 
(n = 23)

NPP 
(n = 62)

Total 
(n = 85)

PP 
(n = 23)

NPP 
(n = 62)

Total 
(n = 85)

Age 
(years) 15.45 ± 0.44 15.53 ± 0.40 15.51 ± 0.41 16.51 ± 0.31 16.61 ± 0.33 16.58 ± 0.33

Height
(cm) 152.7 ± 5.0 153.9 ± 8.0 153.8 ± 7.7 160.2 ± 6.5 160.5 ± 8.2 160.5 ± 8.0

Weight 
(kg) 62.4 ± 7.2 64.6 ± 7.1 64.1 ± 7.2 66.9 ± 6.6 68.6 ± 7.1 68.2 ± 7.0

Maturation 
(% adult  
height)

96.98 ± 1.39 97.53 ± 1.34 97.38 ± 1.37 98.78 ± 0.74 99.05 ± 0.75 98.98 ± 0.75

40m sprint 
(sec) 5.67 ± 0.16 5.73 ± 0.20 5.71 ± 0.61 5.58 ± 0.18 5.66 ± 0.20 5.64 ± 0.58

Agility 
(sec) 7.77 ± 0.22 7.85 ± 0.28 7.83 ± 0.27 7.73 ± 0.27 7.86 ± 0.35 7.82 ± 0.34

CMJ 
(cm) 37.4 ± 3.7 36.9 ± 4.8 37.0 ± 4.5 38.1 ± 3.3 37.5 ± 4.7 37.7 ± 4.3

Yo-Yo 
(m) 2226 ± 432 2050 ± 429 2098 ± 434 2344 ± 359* 2111 ± 533 2174 ± 501

Dribbling 
(sec) 9.71 ± 0.53 9.92 ± 0.63 9.86 ± 0.61 9.65 ± 0.53 9.83 ± 0.59 9.78 ± 0.58

Passing 
(sec) 14.56 ± 1.16 14.84 ± 1.43 14.77 ± 1.36 13.39 ± 1.30* 13.82 ± 1.29 13.70 ± 1.28

Juggling 
(points) 14.0 ± 7.1* 9.0 ± 6.2 10.4 ± 6.8 16.6 ± 6.6* 11.5 ± 7.3 12.9 ± 7.5

Shooting 
(points) 6.9 ± 3.4 6.9 ± 2.8 6.9 ± 2.9 8.3 ± 3.3 7.7 ± 3.2 7.9 ± 3.2

Note: CMJ = counter movement jump; Yo-Yo = Level 1 Yo-Yo intermittent recovery test; * = different from NPP (t-Test, p < .05)
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that these models were able to identify a range from 10 of 17 
(U13) up to 18 of 23 (U17) professional players correctly. The 
classification models for SMP identified a range from 12 of 17 
(U14) up to 15 of 17 (U13) professional players correctly, which 
indicates sensitivities from .76 [.53; 1.00] to .88 [.61; 1.00]. Val-
ues for specificities ranged from .61 [.46; .77] to .80 [.29; 1.00]  
within GMP classification models. This means a correct identi-
fication ranging from 37 of 62 (U16) up to 93 of 116 (U13) non-

the U17 age group was still close (p = .08, p = .74, Nagelkerkes  
R2 = .13), all of the GMP models lacked clearer significance and 
showed lower model fits (.05 ≤ Nagelkerkes R2 ≤ .11).
Table 4 presents the descriptive values from the ROC. The AUC 
[95% CI] indicates values from .65 [.52; .78] to .68 [.55; .81] for 
GMP models and from .71 [.59; .83] to .79 [.67; .91] for SMP 
models. Sensitivities of the GMP classification models indicate  
values between .64 [.36; .93] and .79 [.56; 1.00], which means 

Table 3: Significance, calibration, and model fit values for the general and specific motor performance models.

Age 
group

Omnibus tests of model coefficients Hosmer-Lemeshow test Model fit

χ2 df p χ2 df p Nagelkerkes R2

G
en

er
al

 m
ot

or
 

pe
rf

or
m

an
ce

U13 6.59 4 .16 5.22 8 .73 .09

U14 3.88 4 .42 10.17 8 .25 .05

U16 4.37 4 .36 6.94 7 .44 .07

U17 6.36 4 .17 7.34 7 .50 .11

Sp
ec

ifi
c 

m
ot

or
 

pe
rf

or
m

an
ce

U13 16.37 4 < .01 6.45 8 .60 .22

U14 17.33 4 < .01 5.95 8 .65 .23

U16 10.60 4 .03 7.13 7 .42 .17

U17 8.21 4 .08 4.32 7 .74 .13

Table 4: Descriptive values of the receiver operating characteristic curves for the five classification models.

Age group AUC 
[95% CI]

Sensitivity 
[95% CI]

Specificity 
[95% CI]

Accuracy 
[95% CI] YI

G
en

er
al

 m
ot

or
  

pe
rf

or
m

an
ce

U13 .68 [.53; .82] .64 [.36; .93] .80 [.29; 1.00] .77 [.37; 1.00] .44

U14 .65 [.52; .78] .76 [.66; 1.00] .65 [.22; 1.00] .66 [.32; 1.00] .42

U16 .68 [.55; .81] .78 [.43; 1.00] .61 [.46; .77] .67 [.56; .79] .40

U17 .67 [.55; .80] .79 [.56; 1.00] .64 [.39; .89] .68 [.53; .83] .43

Sp
ec

ifi
c 

m
ot

or
  

pe
rf

or
m

an
ce

U13 .77 [.66; .88] .88 [.61; 1.00] .66 [.46; .85] .68 [.52; .85] .54

U14 .79 [.67; .91] .76 [.53; 1.00] .78 [.54; 1.00] .78 [.59; .99] .55

U16 .74 [.63; .85] .82 [.51; 1.00] .66 [.34; .98] .70 [.51; .88] .49

U17 .71 [.59; .83] .77 [.46; 1.00] .67 [.35; .99] .70 [.51; .89] .44

Note: AUC = area under the curve, YI = Youden Index
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[.55; .80], AUCSMP = .71 [.59; .83], z = 0.46, p = .65).
To illustrate the impact of the single variables in the classi-
fication models, Table 6 shows the BLR regression coefficients 
for the SMP model for the age group with the highest model 
fit (U14). Juggling is the only variable with significant impact 
in that model, reaching an Odds Ratio (OR) [95% CI] of 2.06 
[1.19; 3.55] (p < .01) for z-standardized data, which means that 
achieving one standard deviation better in juggling doubles 
the chances of becoming a professional player. The further 
variables included did not significantly influence the U14 SMP 
regression model (shooting: p = .20; dribbling: p = .46; and 
passing: p = .52).
To obtain further insight into the value of single GMP variables, 
Table 7 presents the BLR regression coefficients for this model 
at the U17 age group. The non-significant results for the over-
all model show that no single variable has a significant impact, 
with the Yo-Yo intermittent recovery test showing the highest 
OR of 1.52 [0.80; 2.89] (p = .20) for z-standardized data, whilst 
the 40m sprint (p = .28), agility (p = .64), and counter movement 
jump (p = .84) showed less important ORs.
Finally, Table 8 presents Pearson correlations between the per-
centage of predicted adult height and motor performance to 
examine the influence of biological maturation. The results do 

professional players. Within SMP models, a range from 41 of 62 
(U16) up to 90 of 116 (U14) non-professional players were iden-
tified correctly (specificities from .66 [.34; .98] to .78 [.54; 1.00]).
Sensitivities and specificities together lead to Youden indices 
(YIs) from .40 to .44, with accuracies from .66 [.32; 1.00] to .77 
[.37; 1.00] in GMP models. In other words, the GMP model with 
the lowest accuracy (U14) would predict 54 of 133 players be-
coming professional (13 valid predictions, 4 professional play-
ers missed). The GMP model with the highest accuracy (U13) 
would predict only 34 players (11 valid predictions, 6 profes-
sional players missed). SMP models reached YIs from .44 to .55, 
with accuracies of .68 [.52; .85] to .78 [.59; .99]. Overall selection 
decisions based on these models would predict 54 of 133 play-
ers (U13: 15 valid predictions, 2 professional players missed) in 
the worst case, while predicting 39 of 133 players (U14: 13 valid 
predictions, 4 professional players missed) represents the most 
effective selection decision from SMP models.
Table 5 displays the results of the non-parametric approach 
to compare the AUCs of GMP and SMP within each single age 
group. None of these four comparisons led to a significant 
difference. The highest z-value appeared within the U14 age 
group (AUCGMP = .65 [.52; .78], AUCSMP = .79 [.67; .91], z = 1.79,  
p = .07), and the lowest in the U17 age group (AUCGMP = .67  

Age group
General motor performance Specific motor performance

AUC [95% CI] AUC [95% CI] Z p

U13 .68 [.53; .82] .77 [.66; .88] 1.38 .17

U14 .65 [.52; .78] .79 [.67; .91] 1.79 .07

U16 .68 [.55; .81] .74 [.63; .85] 0.80 .42

U17 .67 [.55; .80] .71 [.59; .83] 0.46 .65

Table 5: Comparison using the DeLong non-parametric test (DeLong et al., 1988) between the AUCs of the general and specific 
motor performance models for each age group.

Note: AUC = area under the curve

Table 6: Coefficients of the U14 specific motor performance binary logistic regression model (for z-standardized data).

Item1 β SE Wald df p Odds Ratio [95% CI]

Juggling 0.72 0.28 6.75 1 .01 2.06 [1.19; 3.55]

Shooting 0.38 0.30 1.67 1 .20 1.47 [0.82; 2.62]

Dribbling –0.32 0.43 0.54 1 .46 0.73 [0.31; 1.69]

Passing –0.29 0.45 0.41 1 .52 0.75 [0.31; 1.82]

Note: 1 Variables ranked by absolute value of beta coefficients
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pants, the less extensive models in the current study indicate 
substantially lower prognostic validity (Sieghartsleitner et al., 
2019). This may underline the assumed advantages of multidi-
mensionality over less extensive models (Vaeyens et al., 2008; 
Williams & Reilly, 2000; Zuber et al., 2016). However, as long as 
these multidimensional models are not easily applicable to tal-
ent selection in the field, the immediate comparison between 
possible predictors of later performance may be of certain rel-
evance within talent research.

Prognostic validity and specificity of the task

Based on the immediate comparisons of different predictors of 
future performance in youth football, the current research con-
trasted the value of two different areas of motor performance 
for early talent selection. In doing so, there was a continuous 
superiority of SMP (.71 ≤ AUC ≤ .79) over GMP (.65 ≤ AUC ≤ .68) 
in descriptive values within each analysed age group through 
early (U13/U14) and middle adolescence (U16/U17), despite 
the higher measurement reliability of the GMP. None of the four 
comparisons at the different age groups led to a significant dif-
ference between AUCs of GMP and SMP (.07 ≤ p ≤ .65). Howev-

not show any significant correlations between SMP tests and 
biological maturation over all age groups. On the other hand, 
the GMP tests of the 40m sprint (.31 ≤ r ≤ .50) and counter 
movement jump (.33 ≤ r ≤ .37) are correlated with biological 
maturation in early adolescence (U13/U14). These correlations 
decline or disappear over time until middle adolescence, while 
a single correlation between biological maturation and agility 
appears at U17.

Discussion

The findings of the current study show that talent selection 
models with the single dimensions of GMP or SMP do not lead 
in general to significant predictions with the aim of an early 
differentiation between professional and non-professional 
players. Only three out of eight BLR models showed superior-
ity over random predictions and were also calibrated appro-
priately (i.e., the SMP models for the U13, U14, and U16 age 
groups). Compared to the significance of predictions and the 
higher explained variance from the more extensive, multidi-
mensional selection models within a similar group of partici-

Table 7: Coefficients of the U17 general motor performance binary logistic regression model (for z-standardized data).

Item1 β SE Wald df p Odds Ratio [95% CI]

Yo-Yo 0.42 0.33 2.06 1 .20 1.52 [0.80; 2.89]

40m sprint –0.36 0.33 1.17 1 .28 0.70 [0.37; 1.34]

Agility –0.15 0.32 0.23 1 .64 0.86 [0.46; 1.62]

CMJ –0.06 0.31 0.04 1 .84 0.94 [0.52; 1.72]

Note: 1 Variables ranked by absolute value of beta coefficients. CMJ = counter movement jump; Yo-Yo = Level 1 Yo-Yo intermittent recovery test

Table 8: Pearson correlation coefficients between biological maturation (percentage of predicted adult height) and motor perfor-
mance tests

Specific motor performance General motor performance

Age Group Juggling Shooting Dribbling Passing Yo-Yo 40m sprint Agility CMJ

U13 –.01 –.10 –.10 –.12 .05 .31* –.08 .37*

U14 .01 .15 –.03 .08 .01 .50* –.11 .33*

U16 –.12 –.12 –.11 .06 –.14 .23* –.12 .14

U17 –.11 –.05 –.11 –.04 –.08 .07 –.28* .06

Note: Positive correlations express better test performance with higher percentage of predicted adult height; CMJ = counter movement jump; Yo-Yo = Level 
1 Yo-Yo intermittent recovery test; * = p < .05 (false discovery rate adjusted α: .045; Benjamini & Hochberg, 1995)
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Prognostic validity and time span

In addition to the immediate comparison of the prognostic 
validity of GMP and SMP over all age groups and the value of 
single variables within these models, the current study enables 
insight into changes in prognostic validity over different time 
spans from early or middle adolescence to the U20 age group. 
In particular, the prognostic validity of the GMP appeared quite 
stable through all age groups (.65 ≤ AUC ≤ .68), which indicates 
that the value for predicting the U20 player status (professional 
vs. non-professional) from GMP data is similar over a period of 
three years (from middle adolescence: U17 to U20) or seven 
years (from early adolescence: U13 to U20) respectively. This 
seems to be unexpected, because biological maturation influ-
ences the long-term predictions from GMP in early adolescence 
by means of the 40m sprint and counter movement jump, and 
therefore these long-term predictions should suffer from lower 
prognostic validity compared to predictions over shorter time 
spans (Malina et al., 2017). Compared to this stability for predic-
tions from GMP, SMP even shows a tendency for inverse pat-
terns considering the time span. In early adolescence (six to 
seven years before U20), SMP variables differentiated players 
slightly better (.77 ≤ AUC ≤ .79) than they did in middle ado-
lescence (three to four years before the U20 performance crite-
rion; .71 ≤ AUC ≤ .74). Furthermore, the accuracy and specificity 
of both motor performance areas show, on average, a rather 
declining trend from early (U13/U14) to middle adolescence 
(U16/U17). Accordingly, it seems increasingly challenging to 
identify correctly who will (not) become a professional, which 
is inconsistent with the expected pattern (i.e., the shorter the 
time span, the more accurate the prognosis; Güllich, 2014).
These unexpected patterns of prognostic validity over differ-
ent time spans may be due to certain aspects of the methodol-
ogy used in the current research. Firstly, the mixed longitudinal 
and cross-sectional data, which resulted from recurring selec-
tions in the pyramidal standard model of talent development 
within the system of the Swiss Football Association, could lead 
to a different selection level between early (U13/U14) and 
middle adolescence data (U16/U17; Bailey & Collins, 2013). 
The change in the percentage of professional players within 
these different groups of participants supports this consider-
ation (13% professional players at U13/14 vs. 27% at U16/U17;  
χ2 = 7.06, p < .05).
Secondly, as the level of selection increases over time, the het-
erogeneity among players’ potential may decrease (Baker & 
Wattie, 2018). In combination with the progressive attenuation 
of the inequalities linked to the difference in biological matura-
tion in the 40m sprint and counter movement jump, this great-
er homogeneity may redistribute the worth of each predictive 
area to correctly identify future professionals (sensitivity; Baker, 
Wattie, & Schorer, 2019). This would explain why, on average, 
the sensitivities of GMP start to gradually compensate for the 
corresponding loss of discriminative power attributed to ma-
turity-independent factors (i.e., SMP) as adulthood approaches.
Thirdly, the BLR and ROC statistics compensate for the different 

er, the AUC assessment from Hosmer et al. (2013) underpins the 
relevance of a decile difference within this parameter (i.e., AUC 
of .50 = no discrimination; .70 = acceptable discrimination; .80 
= excellent discrimination; and 1.00 = perfect discrimination). 
As this decile difference is the case between GMP and SMP in 
the U13 (AUC = .68/.77) and U14 (AUC = .65/.79) age groups, 
these differences may express a relevant but not significant dif-
ference within discrimination between professional and non-
professional players. For this reason, the current findings of a 
slightly higher discriminative power for SMP over GMP seems 
to be in line with earlier research from the German football tal-
ent identification and talent development program (Höner et 
al., 2017; Höner & Votteler, 2016; Leyhr et al., 2018). For the dis-
crimination between performance levels of players at late ado-
lescence or early adulthood, they also found higher effect sizes 
within SMP compared to GMP in U12 to U15 data. Furthermore, 
the results underline the theoretical considerations of Lidor et 
al. (2009), who assumed higher reliability from GMP tests but 
higher prognostic validity from SMP because of the specificity 
of the task.
With regard to the value of single SMP variables within the dis-
crimination models, juggling shows by far the highest impact 
on future performance within the example of the U14 BLR (OR 
= 2.06 [1.19; 3.55]). Shooting (OR = 1.47 [0.82; 2.62]), dribbling 
(OR = 0.73 [0.31; 1.69]), and passing (OR = 0.75 [0.31; 1.82]) also 
indicate that better test performances have the tendency to 
affect the chance of becoming a professional player positively 
(time scales in dribbling and passing are inverse). Compared to 
earlier research, this relevance of juggling is unexpected, be-
cause juggling tests have not been considered in many studies 
of the prognostic validity of SMP in youth football, nor have any 
studies reported on the long-term prognostic validity of jug-
gling (Murr et al., 2018). Compared to shooting, dribbling, and 
passing, the skill of juggling is not a relevant task within football 
matches, which might explain why juggling has not received 
much attention within talent research (Ali, 2011). Apart from its 
prognostic validity, the higher reliability (rtt = .79) compared to 
other SMP tests in the current study (.31 ≤ rtt ≤ .68), and the sub-
stantial factor loading on the latent dimension technical skills, 
may be hints for the high value of juggling (Höner et al., 2015). 
Earlier results on its independence from biological maturation 
are confirmed in the current study, albeit this is also true for the 
other three SMP tests (Figueiredo, Goncalves, Silva, & Malina, 
2009b; Matta, Figueiredo, Garcia, & Seabra, 2014). Following 
these results, the use of juggling tests within talent selection in 
youth football is highly recommended.
Regarding GMP, earlier research claimed a significant impact of 
test results from different stages of adolescence on adult per-
formance levels (Dodd & Newans, 2018; Gonaus & Müller, 2012; 
Murr et al., 2017). However, the BLR models for GMP in the 
current study did not lead to any significant solutions, whilst 
descriptive values even show surprising inverse characteristics 
in early adolescence (i.e., descriptive statistics indicate better 
values for non-professional players in certain tests within early 
adolescence). 
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the use of the current methodology was a corollary from earlier 
considerations of the research question.

Conclusion

This study of an immediate comparison of the prognostic va-
lidity of GMP (40m sprint, agility, counter movement jump, 
YoYo intermittent recovery test) versus SMP (dribbling, pass-
ing, juggling, shooting) for talent selection in youth football 
seems to provide certain evidence that the latter is more useful 
for predicting future player status. This is in line with theoreti-
cal considerations and earlier research on the topic (Höner et 
al., 2017; Höner & Votteler, 2016; Leyhr et al., 2018; Lidor et al., 
2009). SMP showed promising results with significant BLR mod-
els, especially for long-term predictions from early adolescence 
(U13/U14), whereas the prognostic validity of GMP over this 
longer time span of six to seven years seems to be unclear (for 
instance, descriptive statistics indicate better values for non-
professional players in certain tests within early adolescence). 
This weak prognostic relevance of the GMP is at least partly ex-
plained by the influence of biological maturation. According to 
changes over time, the influence of biological maturation tends 
to disappear and the prognostic validity of GMP becomes more 
evident in middle adolescence (i.e., descriptive statistics indi-
cate better values for professional players in each test), though 
SMP still discriminates players slightly better.
Consequently, until multidimensional models are a) less dif-
ficult to implement for practitioners in the field and b) able 
to process manifold variables from different dimensions for 
overall selection decisions on single players, then SMP should 
be included in less extensive talent selection models in early 
adolescence, as GMP may have more questionable prognostic 
validity. For selection models in middle adolescence, SMP is still 
preferable, though its superiority over GMP decreases.
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directions of descriptive differences in GMP between early and 
middle adolescence (Backhaus et al., 2018). Whilst descriptive 
mean values for non-professional players were better in more 
than 50% of GMP tests during early adolescence, professional 
players performed better in every test during middle adoles-
cence. Therefore, the prognostic validity of GMP tests seems to 
be questionable in early adolescence. Overall, the overlapping 
effects of time spans (the assumed lower prognostic validity 
for longer time spans), different selection levels (the assumed 
higher prognostic validity for heterogeneous groups at lower 
selection levels), decreasing inequalities from biological matu-
ration, as well as further non-linear influences, may have led to 
the stable AUC values over time within GMP, and to the slightly 
higher but decreasing AUC values of SMP.

General limitations

Apart from the above limitations, which address the specific 
topic of prognostic validity and time span, there are also gener-
al aspects of the current study that might limit its worth. Firstly, 
all data analysis was carried out using exploratory dataset mod-
els only. Regarding the statistical machine learning practice, 
this would be only the first step of an analysis, which should be 
completed by validating the metric model through a second 
dataset (Till et al., 2016). However, because of the limited num-
ber of participants in the current study, they could not be split 
into exploratory and validation datasets without violating oth-
er requirements of the statistical analysis. Therefore, the limited 
number of participants as well as the small number of profes-
sional players which emerged as a result, especially within the 
early adolescence sample, may hinder a more comprehensive 
and detailed insight into the value of GMP versus SMP for talent 
selection in youth football.
Secondly, the data analysis ignored non-significant results from 
BLR within the initial step of analysis. However, as the results 
have shown, a non-significant result from BLR within GMP 
data does not necessarily mean that the discriminative power 
of such a model is significantly lower than the discriminative 
power of a model with significant results in BLR within SMP 
data. Furthermore, as stated in the introduction, talent research 
aims for multidimensional models to explain the future perfor-
mance of players (Williams & Reilly, 2000). Therefore, the use of 
single dimensions only (i.e., GMP or SMP) may have its weak-
nesses, such that significant results from BLR set rigid criteria 
for unidimensional models, which would be difficult to meet.
Thirdly, the data analysis is based on the curve linear model 
of the BLR. As mentioned in the introduction, linear statisti-
cal models rely on the higher the x, the higher the y relations 
and may therefore fail to represent intra-individual interactions 
that allow weaknesses in one predictor to be compensated for 
by strengths in another (Conzelmann et al., 2018; Maszczyk et 
al., 2014; Meylan et al., 2010). Apart from that, non-linear alter-
natives (e.g. person-oriented methods or artificial neural net-
works) are unable to deliver immediate comparisons between 
different model configurations (Bogat et al., 2016). Therefore, 
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