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The cognitive engagement hypothesis claims that regular exercise must be
cognitively engaging in order to benefit executive functioning. However, the
available evidence for this hypothesis is circumstantial. Here we look for cor-
relational evidence for the hypothesis in two studies. In Study 1, 145 young
adults first reported the extent to which their primary exercise and non-exer-
cise leisure activities were cognitively engaging. They then completed two
well-known laboratory tasks measuring executive function: a flanker task to
index inhibitory control and a backward digit span task to assess working
memory. Structural equation modeling revealed that when participants
reported that their exercise relied on inhibitory cognitive control, they per-
formed better on the flanker task, and, when their exercise demanded cogni-
tive flexibility, they performed better on a backward digit task. These rela-
tionships did not hold for their primary reported leisure activity. Study 2 con-
firmed this finding with an independent sample of 227 undergraduates and
two different executive function tasks: a stop-signal task to index inhibitory
control and a trail making B task to assess cognitive flexibility. When partici-
pants reported that their regular exercise relied on inhibitory control they
had faster stop-signal reaction times and made fewer trail making errors, and,
when their exercise relied on cognitive flexibility, they had slower stop-signal
reaction times and longer trail making B completion times. These relation-
ships were again not found for participants’ leisure activities. These findings
support the central hypothesis that exercise is associated with cognitive per-
formance on laboratory tasks, provided the exercise is itself cognitively
demanding.
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There is strong evidence that physical exercise is pos-
itively associated with cognitive functioning. Some of
the strongest evidence comes from randomized control
trials involving fitness training programs for older
adults (see meta-analysis by Colcombe & Kramer,
2003), and there is even evidence of benefits to pread-
olescent children engaging in a single bout of mod-
erate aerobic exercise (see review by Chaddock et al.,
2011). Reviews of the evidence for an exercise-cogni-
tion link across the lifespan tend to find the strongest
and most consistent evidence in early development
and in aging populations, though there are plenty of
reports showing correlations in young adult popula-
tions at the peak of their athletic and cognitive abil-
ities (Kozik & Enns, 2021; Ludyga et al., 2020; Pesce
et al., 2023; Voss et al., 2011). These reports have
led to a search for the neuro-physiological bases of
the exercise-cognition link. Some of the top-contend-
ing evidence considers the influence of exercise on
the volume of the dorsolateral prefrontal cortex (Wein-
stein et al., 2012), the temporal cortex (Yuan & Raz,
2014), and the hippocampus (Erickson et al., 2011).
Other evidence considers the role of exercise in brain
oxygenation (Kujach et al., 2018) and in increases in
the concentration of brain-derived neurotrophic fac-
tors (BDNF) implicated in the formation of new neu-
rons (Liu & Nusslock, 2018).

The exercise-brain relationship is also modulated by
multiple behavioral factors. Intense exercise (e.g.,
sprinting) shows stronger correlations with executive
functioning tasks than light exercise (e.g., walking) in
studies involving acute bouts of exercise (Gejl et al.,
2018). Longer acute bouts of exercise correlate more
strongly with cognitive functioning than shorter bouts
(Colcombe & Kramer, 2003). The cognitive benefits of

long-term regular exercise are greater than those of
acute exercising (Padilla et al., 2014). The type of exer-
cise also matters (Soga et al., 2018), with exercise
in dynamic environments (e.g., badminton) tending to
elicit a stronger neurotrophic response than exercise
in more static environments (e.g., treadmill running).
In a systematic review of the benefits of dynamic over
static exercise environments, Gu et al. (2019) con-
cluded that the most consistent evidence favoring
dynamic environments came from observational stud-
ies of children and older adults. Results of direct inter-
vention studies were weaker (Hung et al., 2018) and
some observational studies reported mixed findings
(Becker et al., 2018).

Beyond these broad trends, some researchers specu-
late that a critical factor may be whether one’s regular
exercise is cognitively engaging. Tomporowski (1997),
writing about exercise in older adults, speculated that
there might be sufficient commonalities between
physical and mental exercise to support common
explanatory theories. Fabel & Kempermann (2008),
writing about hippocampal neurogenesis in the aging
rat brain, speculated that rather than isolated physical
activity being the critical ingredient, it was physical
activity combined with cognitive challenges that led to
the best results. Best (2010), writing about children’s
executive function, proposed that cognitively engag-
ing exercise might have stronger effects than non-
engaging exercise. Diamond & Ling (2016), reviewing
the evidence on exercise and cognition put it most
bluntly, “boring exercise is particularly unlikely to yield
cognitive benefits” (pp. 38-39).

Some of the challenges involved in testing the cogni-
tive engagement hypothesis are the large individual dif-
ferences in types of exercise, the variety of settings,
and the diverse conditions under which exercise
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occurs. As a result, any particular exercise can be very
cognitively engaging for some people, but less engag-
ing for others. Likewise, a particular physical activity
can be an exercise involving inhibitory control for
some, but others may find that it challenges their cog-
nitive flexibility. Here we take the direct approach of
asking exercise adherents whether and how they find
their primary exercise to be cognitively engaging. This
measurement approach matches the theoretical con-
struct, because whether an exercise is cognitively
engaging is a question that only each individual can
answer. As such, it takes into account that the same
exercise may be more engaging for some than others.
But its strongest feature is that it offers the test of a
very specific prediction: if a primary exercise depends
heavily on one aspect of cognitive function, then it
should predict relatively better performance on a lab-
oratory measure of that aspect.

There is general consensus that the planning of every-
day activities, the pursuit of small and large life goals,
and the solving of daily problems can be considered
under the umbrella term of executive functioning, also
referred to as frontal lobe functions (Miyake et al.,
2000; Sachdev et al., 2014; Soga et al., 2018). Execu-
tive functions are therefore central to healthy mental
function (American Psychiatric Association, 2013),
along with five other dissociable domains of cognitive
function, including complex attention, learning and
memory, language, perceptual–motor function, and
social cognition (Sachdev et al., 2014). A primary rea-
son for us to focus on executive functions in the exer-
cise-cognition domain is that in a recent exhaustive
review of the literature on attention and athletics, we
examined laboratory tasks measuring a diverse range
of visual-cognitive tasks, including spatial orienting,
spatial shifting of attention, the spatial distribution
of attention, temporal sequencing of actions, and the
control of attention. The results of the review indicated
that the vast majority of studies pointed to the control
of action and attention as lying at the nexus of athlet-
ics-cognition correlation (Kozik & Enns, 2021).

The umbrella term of executive function is often further
subdivided into separate functions of inhibitory con-

trol, cognitive flexibility, and working memory
(Sachdev et al., 2014). Inhibitory control allows one to
ignore distracting sights or sounds and to stop oneself
from acting on impulse when receiving unexpected
information (Pardini et al., 2004; Verbruggen et al.,
2013). Cognitive flexibility refers to how efficiently
one can shift from one mode of thinking or channel
of information to another mode or channel. Working
memory refers to how effectively one can store and
manipulate multiple sources of information over sev-
eral seconds (Diamond, 2013). Table 1 documents the
close relationship between each questionnaire item
we developed and the background research that
inspired it.

There are theoretical reasons to suspect that the bene-
fits of exercise might be specific to the kinds of cogni-
tive demands made by a given exercise type. A primary
reason favoring the cognitive engagement hypothe-
sis comes from the literature on the transfer of train-
ing. Several highly cited reviews of how training in
one context generalizes to success in another context
all agree that there is a sharp gradient of generaliza-
tion (Katz et al., 2018; Moreau, 2022; Simons et al.,
2016). Learning transfers most readily when the con-
texts of study and test are most similar (near transfer),
with successful transfer falling off as contexts become
more different (far transfer). Applied to the question
of exercise-related benefits for cognition, this conclu-
sion implies that exercise-training benefits will corre-
late with the similarity between the cognitive require-
ments of an exercise and a test of a specific cognitive
function. For exactly this reason, and after reviewing
numerous theoretical and methodological pitfalls of
the studies in this area, Furley et al. (2023) cautions
against selling sports and exercise as domain-general
training for executive functioning. A recent study by
Ehmann et al. (2022) further emphasizes the narrow
scope by which exercise and cognition may be linked.
These authors tested elite and sub-elite soccer players,
from ages 12 to 23 years, on a full-surround, multiple
object-tracking task. They found differences favoring
elite over sub-elite players only in the oldest (most
experienced) age groups, which they attributed to the
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similarity of the tracking task to the conditions of real-
life soccer.

The most general version of the cognitive engagement
hypothesis we test in this study is that exercise per-
ceived to rely on executive functioning will predict
better performance on tasks designed to assess
inhibitory control, cognitive flexibility, and working
memory. But because of our own and other’s skepti-
cism concerning far transfer effects (see Fransen, 2022;
Furley et al., 2023), we think there is a greater chance
of finding support for near over far transfer effects.
Namely, if a primary exercise depends heavily on
inhibitory control, it should predict relatively better
performance on a laboratory measure of inhibitory
control (e.g., flanker task) than on a measure of work-
ing memory (e.g., backward span). And in a similar
vein, if an exercise depends heavily on working mem-
ory, then it should predict relatively better perfor-
mance on a laboratory measure of working memory
(e.g., backward span) than on a measure of inhibitory
control (e.g., flanker task). Support for this hypothesis
would be consistent with greater success for near ver-
sus far transfer of learning effects. Finally, in addition
to these two hypotheses assessing the sensitivity of
the cognitive engagement hypothesis, there is a speci-
ficity hypothesis that limits the associations to exer-
cise-specific activities. This means that if similar corre-
lations were found for both the exercise and the non-
exercise leisure activities of an individual, we would
have to conclude that exercise is not unique. Instead,
people with specific strengths among the executive
function dimensions might simply be seeking out
activities in their daily lives that capitalize on those
strengths.

To summarize all these considerations, the hypotheses
tested in the correlational studies that follow can be
arranged on a continuum from specific to most gen-
eral. The most specific hypothesis is that participants’
self-reports of the executive function requirements of
their regular exercise will correlate most strongly with
laboratory tasks that are tied to the particular type of
executive function they identify (i.e., inhibitory control,
cognitive flexibility, working memory). A second and

more general hypothesis is that self-reports will cor-
relate more with all laboratory task performance, with
little specificity between the type of executive function
and the laboratory tasks. The third and most general
hypothesis is that participants’ self-reports will not
only correlate with the executive function demands
of their regular exercise but with the executive func-
tion demands of their non-exercise leisure activities as
well. Support for this last hypothesis would be strong
evidence against the cognitive engagement hypothe-
sis, since it could be interpreted as simply reflecting
each participant’s more general cognitive abilities,
rather than any more specific link between exercise
and cognition.

The first study was designed to test the hypothesis that
cognitively engaging regular exercise predicts execu-
tive functioning on a laboratory test. Volunteer par-
ticipants who were students at a large state-funded
university filled out a survey about their exercise and
leisure activities and then completed two cognitive
tasks in exchange for partial course credit in psychol-
ogy methodology courses. In the survey, participants
self-reported their primary regular exercise (i.e., the
exercise they had done most frequently in the past
six weeks) and answered 30 questions about executive
function use during exercise. The same was done for
a non-exercise leisure activity. The laboratory tasks
were a flanker task to measure inhibitory control and
a backward span task to measure working memory.
These two tasks were chosen because of their frequent
use within the executive function literature, as well
as because of their common use within the exercise
and sport literatures (Chiu et al., 2017; Kamijo et al.,
2009; Wylie et al., 2018). Both of these tasks have
shown very robust reliability and validity when tested
at a group level, though their reliability is considerably
less, though still significant, at the individual partic-
ipant level (Paap & Sawi, 2016; Waters & Caplan,
2003).

Study 1
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This study was not preregistered. We report a priori
power analyses for the sample size. All of the data
files and the statistical code used to analyze the data
in this study are posted here: https://osf.io/
cse4t/?view_only=2125834d3a894994aedef0866ac7c2ee

To determine sample size we conducted a power analy-
sis based on an anticipated measurement model. This
model consisted of three latent factors (inhibitory con-
trol, cognitive flexibility, and working memory), with
each factor allowed to freely correlate, and each indi-
cated by 10 survey items. Following the procedures
outlined in MacCallum et al. (1996), a sample size of
50 participants resulted in an estimated power of .86,
given α = .05, = .07, = .10 and df = 402.

Because the survey questions were not previously val-
idated, we anticipated the possibility that the data
might not support this hypothesized structure, and so
increased our target sample size to allow for modi-
fications in the form of further exploratory analyses,
model non-convergence, potential Heywood cases,
and other concerns common to newly tested constructs
deviating from an ideal solution. It was also difficult
to anticipate a priori what proportion of the recruited
participants would report regular exercise. For all
these reasons, our target sample size was four times
the size indicated by the power analysis, N = 200
(Boomsma, 1985; Holbert & Stephenson, 2002).

Participants were recruited through the University of
British Columbia human study participant pool, fol-
lowing review and approval of the research plan by
the University of British Columbia Behavioral Research
Ethics Board (H18-03515). A total of 196 participants

completed the one hour study and were provided 1%
course credit. Following data filtering steps, the sam-
ple size included 145 participants who reported regu-
larly engaging in physical exercise, 178 who reported
having a leisure activity, and 143 who reported both
activities.

Participants who reported exercising regularly were on
average 20.43 years old (SD = 2.02), the majority were
women (73.10%) and most identified as East Asian
(45.52%), followed by European/Caucasian (23.45%),
Indian-South (18.62%), Other (6.90%), African (2.76%),
Middle Eastern (2.07%) and Latin American (0.69%).
Figure 1A shows the frequency with which various
types of exercise were reported, with exercises consid-
ered to be static versus dynamic indicated with shad-
ing. Static-dynamic categorization was based on com-
mon guidelines and past precedent (Chiu et al., 2017;
Corrado et al., 2014). The most frequently reported
exercises were running and weight training, followed
by gym. Participants reported an average exercise his-
tory of seven months, with an average exercise dura-
tion of 60 to 90 minutes per week, and an average
exercise intensity of moderate.

Participants who reported a primary leisure activity
had very similar characteristics because most of them
also reported exercising. Figure 1B shows the fre-
quency with which various leisure activities were
reported, with activities considered to be passive ver-
sus active indicated with shading. The most frequently
reported leisure activity was viewing television, fol-
lowed by gaming, and reading. Participants reported
an average leisure history of nine months, with an
average weekly duration of 90 to 120 minutes and an
average leisure intensity of low.

Table 1 shows the 30 items that were developed for
this study to measure subjective perception of exec-
utive function use during exercise. They were devel-
oped after careful consideration of the central themes
expressed in each of the references shown beside item.
Items were preceded by, “when completing my primary

Method

Transparency and openness

Estimated sample size

Participants
Items to measure executive function in exercise
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Figure 1 Self-reported exercise

(A) The relative frequency of reported primary exercise and (B) leisure activities in study 1. Type of exercise
(dynamic or static) and leisure (active or passive) is shown in grayscale. See text for description of how the type
was determined.

exercise, I…”. Three sets of 10 questions were designed
to measure inhibitory control, cognitive flexibility, and
working memory. The second column in Table 1 shows
the primary references and inspiration for the concept

captured in the items. Half of all questions were pos-
itively worded and half were negatively worded, with
negatively worded items being reverse scored in all
analyses.
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Table 1
Cognitive engagement items

When completing my primary exercise, I…

Inhibitory control
I1. slow down to avoid making mistakes Pardini et al. (2004); Verbruggen et al. (2013)

I2. care most about speed and performing quickly (R) Pardini et al. (2004); Verbruggen et al. (2013)

I3. filter and ignore distracting information Diamond (2013)

I4. decide what to do through impulse alone (R) Graziano et al. (2010); Tan & Holub (2011)

I5. practice self-control and discipline Jacobson & Matthaeus (2014); Katzir et al. (2010)

I6. follow every action to completion (R) Chu et al. (2015) ; Velzen et al. (2014)

I7. pause and double check what I am doing Huster et al. (2020)

I8. start and complete actions without thinking (R) Diamond (2013); Pardini et al. (2004); Verbruggen et al. (2013)

I9. anticipate making fast or sudden adjustments Graziano et al. (2010); Tan & Holub (2011)

I10. act without self-restraint (R) Pardini et al. (2004)

Cognitive flexibility
C1. adapt and change how things are done Kesler et al. (2011); Buttelmann & Karbach (2017)

C2. have a plan that I stringently follow (R) Diamond (2013); Zelazo (2015)

C3. try to identify new techniques or strategies Kesler et al. (2011); Buttelmann & Karbach (2017)

C4. follow the same routine (R) Diamond (2013); Zelazo (2015)

C5. practice creativity Kesler et al. (2011); Buttelmann & Karbach (2017)

C6. hold the same mindset from start to finish (R) Diamond (2013); Zelazo (2015)

C7. encounter and solve new problems Kesler et al. (2011); Buttelmann & Karbach (2017)

C8. have little-to-no flexibility to modify what I do (R) Diamond (2013); Zelazo (2015)

C9. rely on a diverse skillset Kesler et al. (2011); Buttelmann & Karbach (2017)

C10. think the same thoughts over and over (R) Diamond (2013); Zelazo (2015)

Working memory
W1. pay attention to many things at the same time Bühner et al. (2006); Colom et al. (2010); Conway et al. (2007)

W2. understand everything that is happening even when absent-
minded (R) Ecker et al. (2014); Goldman-Rakic (1992); Miyake et al. (2000)

W3. make predictions about what will happen next Baird et al. (2011)

W4. avoid time-keeping (R) Ecker et al. (2014); Goldman-Rakic (1992); Miyake et al. (2000)

W5. connect and combine different ideas Bühner et al. (2006); Colom et al. (2010); Conway et al. (2007)

W6. do not care about the order in which things happen (R) Ecker et al. (2014); Goldman-Rakic (1992); Miyake et al. (2000)

W7. multitask Bühner et al. (2006); Colom et al. (2010); Conway et al. (2007)

W8. disengage from what is happening around me (R) Goldman-Rakic (1992); Miyake et al. (2000)

W9. monitor what is happening on a second-to-second basis Ecker et al. (2014)

W10. focus all my attention entirely on one thing before moving
onto the next (R) Ecker et al. (2014); Goldman-Rakic (1992)

The 30 items used to assess the role of executive function in a participant’s primary exercise. (R) denotes a
reverse worded item. Each dimension (I = inhibitory control, C = cognitive flexibility, W = working memory) was
represented by 10 items, based on the literature on executive functioning. Full citations for each study shown
in the table are given in the reference section.

Item Reference for concept
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Participants were given a consent form to read and
sign upon arriving. Participants were seated in a small
testing room and were told they would be completing
a series of questionnaires, before being tested on two
cognitive tasks. The first question participants
answered was “Do you complete or take part in any
form of exercise?”, with the option of answering “Yes”
or “No”. If participants answered “Yes”, they completed
a series of exercise and leisure questions, with the
order of the question set (exercise or leisure) randomly
determined. If participants answered “No” to the exer-
cise question, they only answered a series of leisure
questions.

Following Chekroud et al. (2018), participants were
asked: “People engage in many forms of exercise,
including jogging, swimming, cycling, weight training,
soccer, basketball, volleyball, rock-climbing, golf, yoga
and various martial arts. Although there are many
types of exercise, try to think of the one that you con-
sider most central and primary for you. In the box
below, type the name of your primary exercise. Only
type the name of one exercise. If more than one exer-
cise comes to mind, type the one you have done the
most frequently in the past six weeks.” After identi-
fying their primary exercise participants answered 30
Likert-scale questions intended to measure executive
function use. Each question was answered by select-
ing a value ranging from 1 through 5, representing the
terms 1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Often
and 5 = Always. We also categorized the exercise par-
ticipants reported as static or dynamic based on past
practice (Chiu et al., 2017; Corrado et al., 2014). Exam-
ples of static exercise included running and weight
training, and examples of dynamic exercise included
basketball and tennis, as shown in Figure 1.

Following these 30 questions, a set of qualifier ques-
tions measured exercise history, duration, and intensity
(Colcombe & Kramer, 2003; Soga et al., 2018). History

was measured by asking participants when they first
began their primary exercise, with response options
being less than 1 month, 1 to 3 months, 4 to 6 months,
7 to 9 months, and more than 9 months. More than
80% of participants reported exercising regularly for
more than 4 months and none of them reported exer-
cising for less than one month. These data are shown
in Table 2 of the appendix. Duration was measured by
asking participants over the past 6 weeks how much
time in a typical week was spent actively engaging
in their primary exercise, with response options being
less than 30 minutes, 30 to 60 minutes, 60 to 90 minutes,
90 to 120 minutes, and 120 minutes or more. Intensity
was measured asking participants to rate the intensity
of their primary exercise with response options being
none, low, moderate, and high.

If participants reported not exercising, or were ran-
domly assigned to complete leisure questions first,
they saw the prompt: “People engage in many different
leisure activities that are not related to exercise. These
include drawing, writing, painting, reading, cooking,
traveling, puzzle solving, carpentry, photography, the-
atre, politics, playing instruments, listening to music,
and many others. Although there are many types of
leisure activity try to think of the one that you consider
most central and primary for you. In the box below,
type the name of your primary (non-exercise related)
leisure activity. Only type the name of one leisure
activity. If more than one leisure activity comes to
mind, type the one you have done the most frequently
in the past six weeks.” Participants then answered 30
questions measuring executive function use during
leisure activity, as well as questions meant to measure
leisure history, duration and intensity. These leisure
questions mirrored the exercise set of questions.
Leisure activities were categorized, following Dardis et
al. (1994), as either requiring active involvement in an
activity (e.g., cooking) or as merely requiring passive
participation (e.g., watching television).

Executive function testing began after completing all
questions. These tasks were designed so that they

Procedure

Self-report measures

Laboratory tasks
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could be completed within the one hour session that
is typical of studies for this cohort from the University
participant pool. Each participant completed a flanker
task and a backward span task, with the order deter-
mined randomly by the computer. These tasks were
programmed using the Matrix Laboratory (MatLab),
along with the Psychophysics Toolbox (Brainard, 1997;
Kleiner, et al., 2007). The flanker task measures a form
of inhibitory control that is sometimes referred to as
interference control and was similar to many others
reported in the attention and sport literature (e.g.,
Wylie et al., 2018). On each trial, participants reported
the direction of a central arrow on the computer screen
by pressing one of two keys as quickly and accurately
as possible (“Z” for left pointing arrows and “/” for right
pointing arrows). They were also told to ignore any
other arrows on the screen, which could include flank-
ing arrows that were either congruent with the central
arrow (e.g., > > > > >) or incongruent (e.g., < < > < <).

Participants completed 10 practice trials with visual
feedback before completing 200 test trials. Each trial
began with a blank screen for 200 ms, followed by a
small fixation cross for 500 ms, another blank screen
for 200 ms, and then the target display of a central
arrow flanked by distractor arrows. Congruent and
incongruent trials were randomly determined, with the
constraint that there were 100 of each. Flanker task
reaction times were screened to exclude values less
than 300 ms or greater than 1,500 ms, in order to avoid
including responses based on anticipation and atten-
tion lapses, respectively (Chen et al., 2018).

The inhibitory measure from the flanker task is a dif-
ference score between congruent and incongruent tri-
als. Specifically, accuracy for congruent trials was sub-
tracted by accuracy for incongruent trials, and reaction
time for incongruent trials was subtracted by reaction
time for congruent trials. For both these metrics, larger
values meant poorer inhibitory control. Figure 2A and
Figure 2B summarize flanker task performance. Note
that less than 5% of participants had small negative
values on these measures, meaning that they were
slightly faster or more accurate on the incongruent tri-
als. None of these differences were significantly less

than zero and so theoretically, we treated these par-
ticipants as experiencing effectively no interference,
although practically we kept their negative values in
the analyses. The group results showed the expected
flanker effect, where incongruent trials are completed
significantly more slowly and less accurately than con-
gruent trials.

The backward span task was modelled after Bourrier
et al. (2018). On each trial, participants were shown a
series of 3-9 digits presented one at a time at the cen-
ter of a computer screen. Each digit appeared for 1 sec-
ond. At the end of each series, a dialog box appeared
just below the center and participants were asked to
type the digits they had seen in reverse order. Partic-
ipants were given two practice trials involving 3-digit
sequences and accuracy feedback (i.e., the words cor-
rect or incorrect appeared at the center of the screen).
For example, if the sequence included the digits 5-1-7,
the correct answer was 7-1-5. During the first two test
trials, the sequences were 3 digits in length, followed
by two test trials of 4-digit sequences, and so on, until
two 9-digit sequences had been presented.

Working memory capacity was scored by assigning
each correctly reported digit a score of 1. Figure 2C
summarizes backward span accuracy for all partici-
pants. These data depict the expected trend of near
perfect accuracy for 3- and 4-digit sequences, but with
asymptotic accuracy between 4 and 5 digits for
sequences of lengths 5-9. Each participant received a
capacity score based on the average number of cor-
rectly reported digits across all sequence lengths
(Cowan, 2010).

Participants were excluded from the exercise or leisure
analysis if they engaged in the reported activity for
less than 1 month. Participants were also excluded for
near-chance level accuracy on the backward span and
flanker task (14% and 51% cut-offs), as well as if a
participant listed an identical activity for both exercise
and leisure (e.g., volleyball).

Data analytic approach
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Figure 2 Executive function performance overall

(A) Mean accuracy on the flanker task for congruent and incongruent trials, with the mean difference shown in
the third bar. (B). Mean response time on the flanker task for congruent and incongruent trials, with the mean
difference shown in the third bar. (C) Mean number of digits correctly reported on the backward span task as a
function of the number of digits shown. Error bars in A-C are +/- 1 standard error of the mean.

The first CFA included all 30 items measuring exec-
utive function use during exercise, with 10 items
devoted to inhibitory control, cognitive flexibility and
working memory. Descriptive statistics for these 30
items are in Table 3 of the appendix. CFA models were
evaluated using a Chi-square test, but because this test
tends to be sensitive to minor model misspecification
(MacCallum et al., 1996; Steiger, 2007), we also exam-
ined alternative fit indices, including the root mean
square error of approximation (RMSEA), the compar-
ative fit index (CFI), and the standardized root mean
square residual (SRMR). A well-fitting CFA model was
defined as one that either had a non-significant Chi-
square, or, if this standard could not be met, one that
collectively had a CFI > .95, an SRMR < .08. and a
RMSEA < .06 (Hu & Bentler, 1999).

Once a model that met these criteria was identified, it
was used to predict performance on laboratory mea-
sures of executive functioning, along with exercise
qualifiers (history, duration, intensity, and type). All
structural equation models (SEM) and graphics were
built using the statistical language R and the lavaan
package (Rosseel, 2012). Model-based estimates of the
significant parameters identified by the SEM were
derived for each participant using the lavPredictY pack-

age in R, following the procedures in de Rooij et al.
(2023). These parameters were compared for partici-
pants scoring either low or high (using a median split)
on a self-reported dimension of executive function use
in their regular exercise. These estimates are, of
course, on the conservative side, since they force all
the data into two binary categories (low, high).
Nonetheless, they are useful in offering a practical
comparison of the magnitude of the effects across the
self-report variables that are identified by the SEM
models.

An initial assessment of the internal consistency of the
30 measurement items yielded Cronbach’s α = .60. Val-
ues this high are considered quite good in the early
stages of questionnaire development (Nunnally &
Bernstein, 1994). We next use CFA to enforce the
hypothesized allocation of items to the factors (Brown,
2015). The first CFA included 10 measurement items
each for inhibitory control, cognitive flexibility, and
working memory, as shown for item-to-factor loadings
in Table 4 of the supplementary material. This model

Results

Exercise confirmatory factor analysis
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fit poorly, (402) = 978.80, p < .001, RMSEA = .10,
90% CI [.09, .11], CFI = .50, SRMR = .12. Examining
the model in greater detail, positively worded items
tended to load positively and significantly (p < .05) on
the hypothesized dimension, in support of the initial
model. However, negatively worded items sometimes
loaded negatively, as expected (7 of the items), some-
times non-significantly (6 items), sometimes even pos-
itively (2 items) suggesting that additional dimensions
were being tapped. To remain within the hypothesized
theoretical model, we performed additional explo-
rations using CFA to keep enforcing the dimensions
crucial for testing the specific hypotheses of the study.

In a follow-up CFA we dropped reverse worded items
(DiStefano & Motl, 2006; Woods, 2006), but this model
still fit poorly, (87) = 218.06, p < .001, RMSEA = .10,
90% CI [.09, .12], SRMR = .11. the correlation between
cognitive flexibility and working memory also held an
impossibly high value of 1.02. We therefore combined
these strongly correlated factors in a single latent con-
struct. In what follows, we refer to this dimension
as cognitive flexibility, both because items from that
dimension were in the majority, and because the two
working memory items that loaded on this factor (W3,
W5) seemed to relate to flexible thinking more than on
the control of working memory operations.

In an effort to find a better fitting model the remaining
item pool was reduced to a smaller subset. Guidelines
used in exploratory factor analysis suggest reviewing
items with loadings falling below .30 (Pituch &
Stevens, 2015) sometimes even below .50 (Briggs &
MacCallum, 2003). Related advice included exclusion
of cross-loadings, and not allowing fewer than 3 items
per factor. We adopted an iterative process of removing
the lowest factor loading below .50, and then re-exam-
ining the resulting model fit. If model fit was still
below our set cut-offs, this process was repeated. A
total of five additional items were removed, resulting
in a model that fit our measurement criteria, ( =
44.83, p = .101, CFI = .97, SRMR = .06, RMSEA = .05,
90% CI [.00, .08]. Notably this model achieved a non-
significant Chi-square test. This two-factor model had
10 items with three measuring inhibitory control and

seven measuring cognitive flexibility, Table 5 in the
appendix lists these remaining items with respective
factor loadings. The 10 items had high internal con-
sistency, Cronbach’s α = .85, and the two factors were
highly correlated with each other, r = .68. It is worth
stating that although we used CFA to enforce the
hypothesized allocation of items to factors, the
approach was data-driven, as models were fit, evalu-
ated, and adjusted, until a well-fitting measurement
model was found.

Figure 3 shows the best fitting structural equation
model (SEM) in Study 1. We used the two-factor model
of executive function involvement in exercise
described above to compute two factor scores for each
participant indicating involvement of inhibition (Fac-
tor 1) and cognitive flexibility (Factor 2) in their exer-
cise of choice. These two scores, combined with par-
ticipant reported exercise qualifiers (history, duration,
intensity, and type), were used in SEM to predict per-
formance on laboratory measures of executive func-
tioning. The main findings from this model were that
involvement of inhibitory control in the exercise of
choice predicted greater inhibitory control on the
flanker task (i.e., a smaller accuracy difference
between congruent and incongruent trials), β = -.33, B
= -3.30, 95% CI [-6.46, -.13], p = .0411, and exercise
reported as relying on cognitive flexibility predicted
greater working memory capacity on the backward
span, β = .29, B = .57, 95% CI [.02, 1.12], p = .043.
Inhibitory control, as measured by the RTs in the
flanker task was not correlated with either of the two
factors, ps > .18. None of the qualifiers contributed sig-
nificantly to the model. The overall model yielded a
significant Chi-square, (98) = 163.50, p < .001, with
alternative fit indices of RMSEA = .07, 90% CI [.05, .09],
CFI = .87, SRMR = .12.

1. All p values for regressions within this manuscript are
based on unstandardized coefficients (B and not β; Cudeck,
1989; MacCallum & Austin, 2000)

Exercise structural equation modelling
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As a caution against the possibility of violations in
multivariate normality, we also applied the Satorra &
Bentler (1994) correction to this SEM model. The pat-
tern of significant parameter estimates remained
largely the same. Involvement of inhibitory control in
exercise still predicted smaller accuracy differences
between congruent and incongruent trials on the
flanker task, β = -.33, B = -3.30, 95% CI [-6.13, -.46], p
= .023, and involvement of cognitive flexibility in exer-
cise predicted greater working memory capacity on the
backward span, β = .29, B = .57, 95% CI [.05, 1.09], p
= .033. The one notable difference in the model fol-
lowing the correction was that involvement of cogni-
tive flexibility in exercise now also predicted poorer
inhibitory control (a larger accuracy difference
between congruent and incongruent trials on the
flanker task), β = .26, B = 2.69, 95% CI [.21, 5.16], p =
.033.

To help put some concrete values to the effect sizes
identified by the SEM model, we examined each sig-
nificant correlation (between self-reported executive
function use and the laboratory measures) by compar-
ing model-estimated parameters for participants who
scored either low or high on each dimension using a
median split. For example, consider the link between
inhibitory control and flanker task inhibition in Figure
4A. Note that smaller scores reflect relatively better
inhibitory control. Participants rating their exercise
high in inhibitory control had inhibition scores (incon-
gruent – congruent accuracy) that were significantly
smaller (M = 5.10%, SE = 0.137) than participants rat-
ing their exercise low in inhibitory control (M = 5.81%,
SE = 0.136), t(143) = 3.63, p < .001, Cohen’s d = .56.
A similar analysis was conducted on the link between
cognitive flexibility and backward span capacity in Fig-
ure 4D. Here higher scores reflect relatively better
working memory capacity. Participants rating their
exercise high in cognitive flexibility, based on a
median split, had estimated capacity scores that were
significantly higher (M = 3.98, SE = 0.025) than partic-
ipants rating their exercise as low in cognitive flexi-
bility (M = 3.89, SE = 0.023), t(143) = 2.66, p = .009,
Cohen’s d = 0.044.

Although none of the exercise qualifiers were signif-
icant in the SEM, we were encouraged by a reviewer
to examine exercise history (low, high) and type
(dynamic, static) in a similar way, in an effort to seek
further evidence of the validity of the laboratory mea-
sures in reflecting the benefits of exercise participa-
tion. The data in Figure 4B showed that participants
rating their exercise history as longer had estimated
flanker inhibition accuracy that was significantly
smaller (M = 5.14%, SE = 0.107) than participants rat-
ing their exercise history as shorter (M = 6.16%, SE =
0.160), F(1, 141) = 28.26, p < .001, np2 = 0.167. When
the history factor was combined with the median split
on inhibitory control, each of the main effects were
strongly significant (p < .001) and there was no inter-
action (p > .86). A similar analysis examined exercise
history and cognitive flexibility on the backward span
capacity scores (Figure 4E). Participants rating their
exercise history as longer had capacity scores that
were significantly larger (M = 4.10, SE = 0.026) than
participants rating their exercise history as shorter (M
= 3.86, SE = 0.0173), F(1, 141) = 59.67, p < .001, np2

= 0.297. When this factor was combined with median
split on cognitive flexibility, each of the main effects
were significant (p < .002), and there was no interac-
tion (p > .145).

An examination of exercise type (dynamic, static) and
these same measures revealed only one small sig-
nificant effect involving backward span capacity (Fig-
ure 4F). Participants whose regular exercise was static
had slightly larger capacity scores (M = 3.98, SD =
0.019) than participants reporting dynamic exercise (M
= 3.76, SD = 0.043), F(1, 141) = 21.20, p < .001, np2

= 0.131. When this factor was combined with median
split on cognitive flexibility, each of the main effects
were strongly significant (p < .001) and there was no
interaction (p > .23).

As the goal of the leisure data was to provide a compa-
rable analysis to the exercise data, the same 10-items

Leisure confirmatory factor analysis and structural
equation model
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Figure 3 Linking exercise self-reports to performance

The best-fitting structural equation model in Study 1, showing the relations between laboratory task measures
in the top row, the two latent constructs identified by confirmatory factor analysis in the middle row, and the
10 items that loaded significantly on the two latent constructs in the bottom row.

were used to create a leisure measurement model. The
10-item leisure measurement model had acceptable
though slightly worse fit than the exercise measure-
ment model, (34) = 74.16, p < .001, RMSEA = .08,
90% CI [.06, .11], CFI = .95, SRMR = .05.

The 10-item leisure measurement model was com-
bined with leisure qualifiers (history, duration, inten-
sity, and type) to predict performance on laboratory
tasks of executive functioning. No variables in this
model predicted laboratory task performance. In par-

ticular, leisure reported to rely on inhibitory control did
not predict an accuracy difference between congruent
and incongruent flanker trials, β = .17, B = 1.12, 95%
CI [-3.66, 5.91], p = .645, and leisure reported to rely
on cognitive flexibility did not predict backward span
performance, β = .77, B = 1.00, 95% CI [-.15, 2.14], p =
.089. This model had a significant Chi-square, (98)
= 257.30, p < .001, with alternative fit indices of RMSEA
= .10, 90% CI [.08, .11], CFI = .82, SRMR = .132.
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Figure 4 Executive function performance by exercise history and type

(A) Estimated inhibition accuracy for participants who reported their exercise as high vs. low in inhibitory con-
trol. Panel B shows the same effect interacting with exercise history, and Panel C shows the same effect inter-
acting with exercise type. (D) Estimated working memory capacity for participants who reported their exercise
as high vs. low in cognitive flexibility. Panel E shows the same effect interacting with exercise history, and
Panel F shows the same effect interacting with exercise type. Error bars are 95% confidence intervals.

Self-reported executive function use during exercise
was predictive of executive functioning, as measured
by the flanker and the backward span task. However,
the data did not show blanket support for correlations
between self-reports of executive function use in reg-
ular exercise and performance on laboratory measures.
Rather the data supported the primary hypothesis
regarding the near transfer of specific components of
executive functioning to measures of laboratory tasks.

2. There was missing data for one participant who omitted
two questions about executive function use during leisure,
and for another participant who did not report leisure inten-
sity. Rather than excluding these participants full informa-
tion maximum likelihood estimation was used.

For instance, when participants reported that their pri-
mary exercise required greater inhibitory control, the
data showed they also tended to perform more effi-
ciently on the flanker task, a well-established measure
of inhibitory control. And when participants reported
that their primary exercise required high levels of cog-
nitive flexibility, the data showed they tended to have
higher estimates of working memory capacity on the
backward span, a well-established measure of cogni-
tive flexibility.

This pair of findings suggests that the positive rela-
tionship between exercise and executive function
holds for participants who engage in exercise activities
that are perceived to make specific demands on
inhibitory control and cognitive flexibility. Conversely,
it implies that participants who engage in exercise
activities that are not perceived as demanding of exec-
utive functioning tend to perform more poorly on the

Discussion
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corresponding laboratory tasks. These results are
therefore strong correlational support for the cognitive
engagement hypothesis, because regular exercise
reliant on specific components of executive function-
ing were found to predict better performance on labo-
ratory tests aimed at those components.

The third hypothesis regarding the generality of these
results to non-exercise leisure activities in these same
participants’ lives was not supported. When the same
analyses were conducted on participants self-reports
of cognitive engagement in non-exercise leisure activ-
ities, there was no relationship between the executive
function demands of those activities and the labora-
tory tests. This finding argues against the possibility
that people with relatively better executive function-
ing simply seek out activities that capitalize on those
strengths. They data showed that if they do so for exer-
cise activities, they do not do the same for non-exer-
cise leisure activities. The possibility of dispositional
overlap on two or measures commonly faces correla-
tional studies of exercise and cognition (Jacobson &
Matthaeus, 2014; Sakamoto et al., 2018; Wang et al.,
2013). Yet, there was no evidence in the present data
that reports of executive function use during non-exer-
cise leisure activities predicted performance on the
flanker task or backward span. Leisure qualifiers (his-
tory, duration, intensity and type) were also not gener-
ally predictive in the SEM model. These absent correla-
tions suggest that the exercise-dependent correlations
we have observed are not simply reflecting a broader
tendency for people with certain executive function
abilities to seek out activities that are demanding of
those functions.

Why do cognitively engaging leisure activities not pre-
dict performance on laboratory measures of executive
functioning? A possible distinction is that exercise
uniquely activates neurophysiological factors such as
brain volume, neuroplasticity, neurogenesis, and cere-
bral blood flow (Heisz et al., 2017; Hyodo et al., 2016;
Yanagisawa et al., 2010) that lead to structural
changes in the brain. Thus, even if exercise and leisure
are comparable in their reliance on executive func-

tioning, exercise may have an advantage through its
unique contributions through these pathways.

It is important to note that exercise history, duration,
intensity and type were not significant predictors in
the SEM model, although exercise type and history
were significant predictors of laboratory performance
based on the parameters estimated by the SEM mod-
els. One reason these relationships were not seen
more strongly here is that our participants were uni-
versity students and these effects are stronger when
there is a relatively longer history of exercise (Etnier et
al., 1997) and when participants are not at their peak
developmental period (Voss et al., 2011).

We also acknowledge that the present results are
premised on a two-factor measurement model of exec-
utive function use during exercise: inhibitory control
and cognitive flexibility. This model was identified in a
data-driven way and so is highly specific to this data
set. We therefore note several caveats. First, reverse
worded items were not predictive in the construction
of this model, resulting in more statistical noise than
useful signal. In contrast to the 15 positively worded
items which all correlated positively with their dimen-
sions (14 item significantly so), only seven of the nega-
tively worded items correlated negatively, as they were
expected to, and they correlated less strongly than the
positive items. Six other negative items were near zero
in their correlations (I4, I8, I10, C10, W6, W8), and two
items were weakly positively correlated (C4, C8). Our
interpretation is that participants had a harder time
interpreting these items with respect to the positively
worded rating scale (ranging from never to always).

Second, we collapsed working memory and cognitive
flexibility into one dimension we called cognitive flex-
ibility for two reasons; a majority of items from that
dimension loaded onto it and because the two working
memory items that loaded on this factor (W3, W5)
seemed to relate to flexible thinking as much or more
than the control of working memory. A strong theo-
retical interpretation of this finding might be that the

Limitations
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three-factor model of executive functioning favored by
Diamond (2013), Miyake et al. (2000), and others is
wrong. However, we think this is premature, given the
nature of our unvalidated 30-item self-report ques-
tionnaire that is focused solely on regular exercise and
leisure activities. It seems more likely that participants
found these concepts hard to distinguish from one
another in their subjective reports. The finding may
also be peculiar to this participant sample. To address
these concerns, we tested this model in an indepen-
dent sample in study 2 and at the same time used
two different standard laboratory tasks: one measuring
inhibitory control (stop-signal task) and one measuring
cognitive flexibility (trail making B).

This study built on Study 1 in two ways. First, it was an
opportunity to test the two-factor structure of execu-
tive function use during exercise identified in study 1
within an independent data set. Second, Study 2 used
different executive function tasks, the stop-signal task
and trail making B.

The stop-signal task measures a form of inhibitory con-
trol sometimes called action cancellation. Participants
who regularly exercise have shown better inhibitory
control on this task (Padilla et al., 2013, 2014), as have
dynamic athletes over athletes from static sports and
non-athletes (Wang et al., 2013), and, as have expert
soccer players over novices (Beavan et al., 2020; Hag-
yard et al., 2021).

The trail making B task is a completion-time based
measure of cognitive flexibility (Hobert et al., 2011;
Sánchez-Cubillo, 2009). Trail making B times are
reported to be shorter for athletes of greater skill from
those of lesser skill (Han et al., 2011), is reported to
improve following a session of exercise (Harveson et
al., 2016; Murray & Russoniello, 2012), and is sensitive
to exercise intensity (Tierney et al., 2010).

The primary predictions, following from the cognitive
engagement hypothesis, were that participant’s
reports of inhibitory control during exercise would pre-
dict stop-signal task performance as well as errors

made during trail making, and that participant reports
of cognitive flexibility during exercise would predict
faster trail making completion time. As in Study 1, par-
ticipants also answered questions about their leisure
activities, which the cognitive engagement hypothesis
would not expect to predict executive function.

This study was not preregistered. We report a priori
power analyses for the sample size. All of the data
files and the statistical code used to analyze the data
in this study are posted here: https://osf.io/
cse4t/?view_only=2125834d3a894994aedef0866ac7c2ee.

Following MacCallum et al. (1996), we estimated that
a sample of 200 resulted in an estimated power of .69,
given α = .05, = 0.07, = .10 and df = 34. Increasing
the sample to 300 resulted in an estimated power of
.86. We therefore sought a sample size falling between
the bounds of 200-300. The final sample size was 243
for an estimated post hoc power of .80.

Participants were recruited through the University of
British Columbia human study participant pool, fol-
lowing review and approval of the research plan by
the University of British Columbia Behavioral Research
Ethics Board (H18-03515). A total of 299 participants
completed the study, and among these 243 reported
exercising. All participants completed the study within
an hour and were provided 1% course credit. Partici-
pants were excluded if their exercise or leisure history
was less than 1 month, and one participant was also
excluded for listing an identical activity for both exer-
cise and leisure. This left 227 in the exercise data set
and 290 in the leisure data set, with 220 engaging in
both exercise and leisure activities.

Study 2

Method

Transparency and openness

Estimated sample size

Participants
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Participants who exercised were on average 20.40
years old (SD = 3.10), the majority were women
(77.53%) and most identified as East Asian (45.37%),
followed by European/Caucasian (26.43%), Indian-
South (11.01%), Other (9.69%), Middle Eastern (2.64%),
Latin American (2.20%), Native American (1.32%),
African (0.88%), and opting to not answer (0.44%). Fig-
ure 5A shows the relative frequency of various exercise
activities. Participants reported an average exercise
history of 7 months, with an average of 60 to 90 min-
utes of per week, and an average intensity of moder-
ate.

Participants who reported a primary leisure activity
had very similar characteristics because most of them
also reported exercising. Figure 5B shows the relative
frequency of various leisure activities, with the most
popular being viewing, listening to music and reading.
Participants reported an average leisure history of 9
months, with an average of 90-120 minutes per week,
and an average intensity of low.

The procedure followed that of Study 1, with two
exceptions: (1) participants completed only the posi-
tively worded items identified in Study 1 for both exer-
cise and leisure activities, and (2) laboratory testing
consisted of the stop-signal task and trail making B
task, with task order randomized.

The negatively worded items were not included in
Study 2, both because they did not contribute to a
good-fitting model, and because we were looking to
reduce the time taken in answering the self-report
questions. The stop-signal and trail making B tasks
together more time to complete than the tasks in
Study 1. Thus, to balance the limited one hour period
we had with each participant, along with the added
time needed for the new tasks, we administered only
the positively worded items. We retained the 10 items
comprising the model supported by Study 1 along with

the five other positive items, just in case Study 2
pointed to a model with a different factor structure.

These tasks were programmed using the Matrix Labo-
ratory (MatLab), along with the Psychophysics Toolbox
(Brainard, 1997; Kleiner et al., 2007). The stop-signal
task measures a form of inhibition called action can-
cellation. Performance on this task is often described
as a race between the go process and stop process
where the winner of this races determines if an action
is completed or canceled (Logan & Cowan, 1984; Ver-
bruggen et al., 2019). The main outcome of the stop-
signal task is the stop-signal reaction time (SSRT). The
present stop-signal task in this study was modelled
after Wang et al. (2013) and Muggleton et al. (2010).
The stop-signal task consisted of three phases: base-
line, calibration, and testing. Participants first com-
pleted 50 baseline trials in which they received only
go-signals. The go-signal on these trials was a white
circle that appeared on a black computer screen. Par-
ticipants pressed “Z” with the left hand when this
white circle appeared to the left of center and “/” with
the right hand when it appeared to the right. They
were instructed to respond as quickly and accurately as
possible. The order of events included a fixation cross
for 500 ms, a blank black screen for 200 ms, followed
by the target, which remained on the screen until a
response was made. Mean RT and accuracy were dis-
played to participants following these 50 baseline tri-
als.

Participants completed 32 calibration trials, with 24 go
trials and 8 stop trials. Stop trials were like go trials
except they included the appearance of a stop sig-
nal in the form of a central white circle. When this
stop signal appeared, participants were instructed to
immediately stop all keyboard responses. Stop trials
ended 2 seconds after the appearance of the stop sig-
nal (action cancellation; inhibition success) or after a
keyboard response (action noncancellation; inhibition
failure). The period of time between the go-signal and
the stop-signal is known as the stop-signal delay (SSD)
and was initially set to 170 ms. To discourage inten-

Procedure

Self-report measures

Laboratory measures
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Figure 5 Self-reported exercise

The relative frequency of reported primary exercise (panel A) and leisure (panel B) activities in Study 2. Type
of exercise (dynamic, static) and leisure (active, passive) is shown in colour. See text for description of how the
type was determined.

tional slowing in anticipation of a stop-signal, RTs on
Go trials had to be faster than the mean RT a partici-
pant had achieved during the baseline trials with a tol-
erance of three standard deviations. Slower responses
prompted a screen message to “act as quickly and
accurately as possible” for 1,750 ms.

After finishing a block of trials, participants were given
on-screen feedback about their mean RT and accuracy,
along with a message that the next set of trials would
be easier (or harder). False Go responses were used
to calculate a noncancelled error rate. This rate repre-
sented the proportion of trials in which a stop signal
appeared, but participants still made a keyboard
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response. If this rate exceeded .625, then the time
between go-signal and stop-signal (SSD) on the next
set of trials was shortened by 40 ms, thereby allowing
more preparation time for the participant. If this rate
was less than .375, then the SSD on the next set of tri-
als was lengthened by 40 ms. If this rate fell between
these bounds, the SSD remained the same. The cal-
ibration phase ended when participants achieved a
noncancelled error rate between .375 and .625 for two
consecutive blocks. The testing phase began immedi-
ately after the calibration phase and consisted of 108
go trials and 36 stop trials. Stop trials were further bro-
ken down such that 12 were at the SSD determined
in the calibration phase, 12 were 40 ms less than this
SSD, and 12 were 40 ms more than this SSD.

An estimate of stop-signal reaction time was calcu-
lated for each participant using their distribution of
correct go RTs, noncancelled error rates, and SSDs from
the testing phase (Muggleton et al, 2010; Verbruggen
et al., 2019; Wang et al., 2013). Briefly, if a participant
had an SSD of 100 ms and a noncancelled error rate of
.45, this would suggest that, for this given delay 45%
of the time, this participant’s go process was faster
than their stop process. In this example, the go RT
nearest the 45th percentile would be identified within
the correct go RT distribution and subtracted by 100
ms to measure this participant’s stop signal reaction
time. This process was completed for each SSD (criti-
cal, + 40 ms and -40 ms) where the noncancelled error
rate fell between .15 and .85, with the resulting SSRTs
averaged into a single mean SSRT (also sometimes
called SSRTav; Verbruggen et al., 2019) 3.

Figure 6 depicts outcomes from the stop-signal task,
including correct go RTs, noncancelled RTs, and the
mean SSRT. As expected, RTs were faster during base-
line trials (a stop signal never appeared), followed by
noncancelled trials, and they were slowest on trials
where a stop signal could appear but did not. Also as

3. Two participants had noncancelled error rates outside of
.15 and .85 for all three SSDs. For these two participants
their SSRT was calculated based on their performance dur-
ing the final two blocks of the calibration phase.

expected (Wang et al., 2013), the noncancelled error
rate on test trials increased as the SSD was elongated.

The second executive function task was trail making B.
During this task participants tried to connect spatially
dispersed numbers and letters in alternating order
(e.g., 1-A-2-B-3-C) on a computer screen, using a
mouse. Each trial began with the number 1 presented
randomly on the screen. Once the participant clicked
on its location, all the remaining numbers and letters
appeared in random locations. Participants then
clicked on the next target (e.g., the letter A), which
prompted a line to connect the A to the previous target
(1). This process was repeated until all targets had
been clicked. Numbers and letters were in consolas
font (size 40), and a correct click fell within a 20-pixel
radius of the current target. Participants completed
one practice trial from 1 to D prior to testing.

Participants completed a total of five trials for targets
from 1 to M. Target locations were randomly deter-
mined with the constraint that the target could not
overlap. Completion times for these five trials were
averaged to calculate mean trail making completion
time. Errors (any click outside a 20-pixel radius) were
also summed across all five trials. The mean comple-
tion time in the current study was approximately 60
seconds, and errors per trial averaged around 5. Note
that many other measures are possible with this com-
puterized trail making test, but they fall outside the
scope of this study.

As in Study 1, a 10-item measurement model was fit to
the exercise data. An assessment of the internal con-
sistency of the 10 items yielded Cronbach’s alpha = .86.
Mean ratings and standard deviation on the 10 exer-
cise items are summarized in Table 6 of the appendix.
This model yielded a significant Chi-square, (34)
= 113.09, p < .001, it showed medium-to-acceptable-
fit, RMSEA = .10, 90% CI [.08, .12], CFI = .91, SRMR =
.07. Additional exploration including all 15 positively

Results

Exercise results
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Figure 6 Executive function performance

(A) Mean reaction times in the baseline, calibration, and test phases of the stop-signal task in Study 2. (B) Mean
percentage of noncancelled error rates in the three stop-signal delay conditions in Study 2. Error bars in A and
B are +/- 1 standard error of the mean.

worded items did not yield a better-fitting model, and
so we moved forward with SEM modeling.

Figure 7 shows the structural equation model, which
combined the two factor scores derived from the
10-item exercise measurement to predict performance
in the laboratory tasks. The main findings were that
exercise reported to rely on inhibitory control pre-
dicted faster stop-signal reaction time, β = -.24, B =
-14.82, 95% CI [-28.45, -.1.20], p = .033 and fewer trail
making errors, β = -.27, B = -11.53, 95% CI [-21.39,
-1.67], p = .022, but did not predict faster trail making
completion time, β = -.21, B = -4.56, 95% CI [-9.15, .03],
p = .051. Exercise reported to rely on cognitive flexibil-
ity predicted slower stop-signal reaction time, β = .22,
B = 13.15, 95% CI [1.52, 24.79], p = .027, and slower
trail making completion time, β = .30, B = 6.22, 95% CI
[2.24, 10.20], p = .002, but did not predict trail making
errors, β = .17, B = 7.14, 95% CI [-1.20, 15.48], p = .093.
This pattern of results corresponds to the pattern dis-
covered in Study 1.

A number of exercise qualifiers were associated with
the laboratory tasks. Namely, participating in dynamic

exercise predicted faster stop-signal reaction time, β
= -.18, B = -19.37, 95% CI [-33.70, -5.04], p = .008,
and faster trail making completion time, β = -.17, B =
-6.14, 95% CI [-10.99, -1.29], p = .013. Longer exer-
cise history predicted slower trail making completion
time, β = .16, B = 1.96, 95% CI [.44, 3.48], p = .012. The
model yielded suboptimal fit to the data, as evidenced
by a significant Chi-square, (98) = 307.45, p < .001,
with alternative fit indices being, CFI = .82, RMSEA =
.10, 90% CI [.08, .11], SRMR = .13. Applying a Satorra
and Bentler (1994) correction for non-normality did
not greatly alter parameter estimates. One exception
was that exercise reported to rely on inhibitory control
no longer predicted trail making errors, β = -.27, B =
-11.53, 95% CI [-24.20, 1.13], p = .074.

We again examined the effect sizes identified by the
SEM model by comparing model-estimated parameters
for participants who scored low versus high on each
dimension using a median split. Figure 8A shows this
for the link between mean stop-signal time and
inhibitory control: participants rating their exercise
high in inhibitory control had values that were signif-
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Figure 7 Linking exercise self-reports to performance

The best-fitting structural equation model in Study 2, showing the relations between exercise qualifiers in the
top row, the two latent constructs identified by confirmatory factor analysis in the middle row, and the 10 items
that loaded significantly on the two latent constructs in the bottom row.

icantly faster (M = 270 ms, SE = 0.98 ms) than partici-
pants rating their exercise as low in inhibitory control
(M = 275 ms, SE = 0.87 ms), t(225) = 3.40, p < .001,
Cohen’s d = 0.451. The link between cognitive flexibil-
ity and mean stop-signal time was not significant, p >
7.

A similar examination of trail making errors in Figure
8D showed that participants rating their exercise high

in inhibitory control had mean trail making errors that
were significantly fewer (M = 21.3, SE = 0.41) than par-
ticipants rating their exercise low in inhibitory control
(M = 26.1, SE = 0.39), t(225) = 8.44, p < .001, Cohen’s
d = 1.12. Trail making time was also longer for partic-
ipants rating their exercise high in cognitive flexibility
(M = 63.08 s, SE = .37) than those who rate their exer-
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cise low in cognitive flexibility (M = 60.67 s, SE = .31),
t(225) = 5.02, p < .001, Cohen’s d = .67.

We again examined the exercise qualifiers of history
and type in this model. With regard to exercise history
(Figure 8B), stop-signal times were significantly slower
for participants reporting a longer exercise history (M
= 275 ms, SE = 0.770) than a shorter history (M = 269
ms, SE = 1.130), F(1, 223) = 14.48, p < .001, np2 = 0.061.
When this factor was combined with a median split on
inhibitory control, each of the main effects were signif-
icant (p < .001) and there was no interaction (p > .46).

Figure 8C shows that participants engaged in dynamic
regular exercise had faster stop-signal times (M = 263
ms, SE = 1.31) than participants engaged in static exer-
cise (M = 275 ms, SE = 0.631), F(1, 223) = 71.76, p <
.001, np2 = 0.243. The same pattern held for trail mak-
ing completion times. Participants engaged in dynamic
regular exercise had faster trail making times (M = 59.7
sec, SE = 0.583) than participants engaged in static
exercise (M = 62.4 sec, SE = 0.270), F(1, 223) = 18.75,
p < .001, np2 = 0.078. When these factors were com-
bined with median split on inhibitory control, each of
the main effects were strongly significant (p < .001)
and there were no interactions (p > .20).

A structurally identical 10-item two-factor model was
fit to the leisure report data. This model yielded a sig-
nificant Chi-square, (34) = 109.88, p < .001, and
showed acceptable fit on alternative fit indices, RMSEA
= .09, 90% CI [.07, .11], CFI = .95, SRMR = .05. No
variables in this model predicted executive functioning
task performance. Among the paths with the largest
standardized beta coefficients, leisure reported to rely
on inhibitory control did not predict trail making com-
pletion time, β = -.21, B = -2.76, 95% CI [-6.21, .69], p =
.117, or trail making errors, β = -.15, B = -4.02, 95% CI
[-10.90, 2.85], p = .251, or SSRT, β = .12, B = 4.64, 95%
CI [-5.22 14.50], p = .356. Leisure reported to rely on
cognitive flexibility did not predict trail making com-
pletion time, β = .12, B = 1.65, 95% CI [-1.79, 5.09], p
= .348. The overall model had a significant Chi-square,

(98) = 401.90, p < .001, with alternative fit indices
being, RMSEA = .10, 90% CI [.09, .11], CFI = .83, SRMR
= .16.

Self-reports of executive function use during exercise
predicted performance on the stop-signal and trail
making B task. Participants who reported that their
exercise relied on inhibitory control tended to have
faster stop-signal reaction times and made fewer trail
making errors. The results of study 2 did not find
leisure activities to predict executive functioning in a
similar way. Yet is important to note that not all the
results supported the cognitive engagement hypothe-
sis. Most notably, participants who reported that their
exercise relied on cognitive flexibility were less accu-
rate in action cancellation and had slower trail making
times.

The findings for inhibitory control in both studies 1
and 2 supports previous findings that this component
of executive functioning may be the most sensitive to
exercise-related improvement (Hsieh et al., 2020; Soga
et al. 2018; Liu-Ambrose et al., 2010). Cognitive flex-
ibility in hindsight, may have resulted in slower trail
making through the employment of inefficient strate-
gies. While some aspects of cognitive flexibility may
be beneficial for trail making B (e.g., efficient shifts
in task set), others may be deleterious (e.g., innova-
tion and creativity). These latter aspects might slow
trail making completion times, if, for example, partici-
pants are overthinking in their search for a hidden pat-
tern or some underlying structure in the display that
is not actually present. Such overthinking might con-
tribute to slower response times during a search for
successive symbols that are positioned randomly on
the screen.

The exercise qualifiers of history, duration, intensity,
and type in study 2 also revealed some findings worth
discussing. First, participants exercising in dynamic
environments tended to have faster stop-signal reac-
tion times and trail making completion times when
compared to those in static environments. In a previ-
ous study, Wang et al. (2013) reported that athletes

Leisure results

Discussion
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Figure 8 Executive function performance by exercise history and type

(A) Estimated stop-signal response time (SSRT) for participants who reported their exercise as high vs. low in
inhibitory control. Panel B shows the same effect interacting with exercise history, and Panel C shows the same
effect interacting with exercise type. (C) Estimated trail making errors for participants who reported their exer-
cise as high vs. low in inhibitory control. Panel D shows the same effect interacting with exercise history, and
Panel C shows the same effect interacting with exercise type. Error bars are 95% confidence intervals.

from dynamic sports (tennis) had faster stop-signal
reaction times than athletes from static sports (swim-
mers) and nonathletes, supporting the idea that
inhibitory control is associated more strongly with
dynamic exercise activities (Heilmann et al., 2022).
Second, participants reporting longer exercise histo-
ries tended to have slower trail making completion
time. On the face of it, this outcome is contrary to
the idea that a longer exercise history is beneficial for
all executive functioning (Padilla et al., 2013, 2014),
though it may also reflect the degree to which a given
exercise can remain novel and challenging, a specula-
tion worth pursuing in future research.

The claim that cognitive engagement during exercise
is beneficial for cognition has been made previously in

studies of older adults (Tomporowski, 1997), in studies
of children (Best, 2010; Diamond & Ling, 2016), and by
neurophysiologists speculating on hippocampal neu-
rogenesis in the aging brain (Fabel & Kempermann,
2008). The present study tested this cognitive engage-
ment hypothesis with a correlational individual-dif-
ferences methodology, looking for links between self-
reported executive function use in participants’ regular
exercise and their performance on laboratory tests of
these functions, in two independent samples of partic-
ipants.

Rather than trying to find an a priori definition of cog-
nitive engagement, we asked participants to indicate
how much their primary exercise made demands on
their executive functions. We did this by having par-
ticipants provide ratings on statements that character-
ize the mental requirements of their primary exercise,
with the statements inspired by three components of

General Discussion
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executive function: inhibitory control, cognitive flexi-
bility, and, working memory (see the references asso-
ciated with each item in Table 1). Then we submit-
ted these responses to a confirmatory factor analysis in
order to find a good fitting measurement model. The
results showed support for two components: inhibitory
control and cognitive flexibility.

In a second phase, participants performed two labo-
ratory tasks that are often used to assess executive
function. A structural equation model was built to see
whether the constructs identified by confirmatory fac-
tor analysis predicted participants’ performance on
these two laboratory tasks. The results showed that
when participants reported that their exercise relied
on inhibitory cognitive control, they performed better
on a flanker task, which requires active ignoring of dis-
tracting information. When their exercise demanded
cognitive flexibility, they performed better on a back-
ward digit span task, which requires the active manip-
ulation of mental information.

In a second study, we tested an independent sample of
participants and two different executive function tasks
(stop-signal, trail making B). The results supported the
predictive validity of the inhibitory control factor, (i.e.,
reports of the need for inhibitory control in a partici-
pant’s regular exercise predicted their performance on
the stop-signal task). There was some support, though
weaker, for the predictive validity of the cognitive flex-
ibility component (i.e., there were fewer trail making B
errors). A comparison of studies 1 and 2 also showed
that the two-factor exercise model in study 2 showed
a poorer fit than the same model in study 1. A reduced
fit here is not entirely surprising, given the exploratory
and data-driven approach used in study 1, which was
able to overfit the data by capitalizing to some degree
of measurement noise. Future studies would do well to
replicate each of the studies in detail (i.e., testing the
same laboratory tasks in a new sample of participants),
rather than trying to generalize from one set of tasks
in Study 1 to a new set of tasks in Study 2.

In both studies, we also tested the specificity of the
findings for exercise, by repeating the procedures for
participants’ non-exercise leisure activities. The exer-

cise-related associations we observed with executive
function measures were not found for these self-
reports of leisure activities, ruling out the possibility
that the correlations we observed were more general
dispositional characteristics of the participants. Taken
together, these findings support the more focused
claim that when an exercise is perceived to depend
more heavily on a specific dimension of executive
functioning, then it predicts relatively better perfor-
mance on a laboratory measure of that specific dimen-
sion. At least this was the finding for the inhibitory
control dimension. It was less strongly so for the cog-
nitive flexibility dimension, and it was absent for work-
ing memory.

At a global level, these findings are consistent with
much research over the past few decades supporting
the idea that exercise contributes significant positive
effects to the cognitive functioning of healthy young
adults (Ludyga et al., 2020; Voss et al., 2011). At the
same time, we hasten to note that these effects tend
not to be as large, nor as robust, as those that can
be found in samples of individuals who are not at
the peak of their cognitive and athletic development,
including children, aging adults, and individuals with
cognitive impairments through trauma or disease (Voss
et al., 2011). However, where the present findings con-
tribute most to past results is in the emphasis they
place on the specificity of the transfer between exer-
cise and cognition. This point can be contrasted with
the conclusions of Ludyga et al. (2020), who after con-
ducting a meta-review of 80 studies using randomized
controlled trials, concluded that “the effect of exercise
on cognition appears to be general rather than selec-
tive, as effect sizes did not differ significantly between
the assessed cognitive domains” (p. 605). However,
that study compared the benefits of various types of
exercise quite generally to various dimensions of exec-
utive functioning. It did not look for specific associ-
ations between dimensions of executive functioning
and related laboratory tasks. And how could it have?
There is currently no agreement on which exercise

Implications
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activities link specifically to which dimensions of exec-
utive functioning. Here we broke that impasse by ask-
ing participants directly to indicate the demands their
exercise made on the various dimensions.

A central finding emerging from Ludyga et al.’s (2020)
review that is also consistent with the present finding
is the finding of larger benefits of “exercise on cog-
nitive function after coordinative exercise compared
with other exercise types” (p. 603). It seems reasonable
that coordinative exercises such as running and drib-
bling a soccer ball with the feet or a basketball with
the hands place greater demands on inhibitory control
and cognitive flexibility than exercises that focus more
exclusively on aerobic fitness or strength training.

Although the present studies were designed to detect
relationships between all three components of execu-
tive function - inhibitory control, cognitive flexibility,
and working memory - the inhibitory control compo-
nent showed the most consistent associations across
the two studies. Study 1 showed that for undergradu-
ate students, exercise that made greater demands on
inhibitory control predicted a smaller accuracy differ-
ence between congruent and incongruent trials on a
flanker task. Study 2 found this same exercise-spe-
cific relationship in a different group of undergraduate
students, exercise that made demands on inhibitory
control predicted faster stop-signal reaction time and
fewer trail making errors. This means that the exercise
reported to rely on inhibitory control was linked to
three distinct facets of this construct, including the
control of interfering distractors (flanker task), the can-
cellation of prepared actions (stop-signal task), and
control over impulsivity (trail making B).

The predictive strength of inhibitory control over other
executive functions is supported by recent reviews. A
review of high-intensity interval training by Hsieh et al.
(2020) and a study of resistance training by Soga et al.
(2018) both reported that these forms of exercise were
linked to improvements in inhibitory control more con-
sistently than cognitive flexibility and working mem-
ory. In a related study, Liu-Ambrose et al. (2010) com-
pared older adult women assigned to either weekly
resistance training or to balance and tone training.

After 12 months, participants in both groups showed
comparable cognitive flexibility (as assessed by trail
making tasks) and working memory (as assessed by a
digit span task), but participants assigned to resistance
training showed greater inhibitory control than those
that completed balance and tone training (as assessed
by reduced interference in a Stroop task).

The neurophysiological account of the exercise-cogni-
tion link also provides perspective on why the associ-
ation between leisure and executive functioning may
not be as strong. First, leisure activities may not influ-
ence cerebral blood flow to the same degree as exer-
cise. For example, Yanagisawa et al. (2010) found that
an acute bout of exercise improved inhibitory control
on a Stroop task (i.e., less interference) and that this
increase in performance coincided with greater cere-
bral blood flow within the left dorsolateral prefrontal
cortex, implicated in more efficient inhibitory control.
Second, leisure activities may not lead in the same
way to the cascade of consequences that stem from an
increase in neurotrophic factors such as BDNF (Erick-
son et al., 2012).

The first limitation to note in this study concerns the
participant sample and the range of activities they
reported as their regular exercise. A young adult sam-
ple of students at a large state-funded university limits
the generality of the findings to this cohort. Their most
frequently reported exercises were running, weight
training, and gym in study 1 and weight training, run-
ning/jogging, and dance/yoga in study 2. Both of these
factors conspire to make this a fairly conservative test
of the cognitive engagement hypothesis. Given the
vast extant literature on exercise-cognition links
reviewed in the introduction, the hypothesis would
have a better chance of finding support in studies of
participants who are not at their peak development
(Voss et al., 2011) and in participants who engaged in
a wider range of activities (Ludyga et al., 2020).

A second limitation to consider is that our assessment
of the executive functioning involved in a participant’s
regular exercise was based on self-report. Along with

Limitations and future directions
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the strengths of this approach, we highlighted in the
introduction (e.g., being able to take into account indi-
vidual differences in types of exercise, the variety of
settings, levels of engagement, and the diverse con-
ditions under which exercise occurs) there are also
weaknesses. One of them is that participants may not
have equally good self-awareness of the involvement
of executive functioning in their exercises. Another is
that some dimensions may lend themselves to self-
report more readily than others. For example, given
the present results, it may be easier to access the
inhibitory control dimension in a subjective report
than the working memory dimension. Future research
might compare these methods with more implicit
measures (e.g., content analyses of participants’ spon-
taneous descriptions of exercise scenarios) or even
consider third-party observational measures (e.g.,
coaches or other athletes on the same team).

The SEM models in both studies provided less than
perfect fits to the data, by both absolute (RMSEA,
SRMR) and relative (CFI) criteria. This means that sub-
stantial variance in the laboratory tasks measuring
executive functions was not predicted by the latent
variable structure in the self-report data. This is not
surprising, given that executive functioning is affected
by many factors, especially in a university student sam-
ple that is engaged in many activities that can influ-
ence executive function both positively (e.g., studying)
and negatively (e.g., partying). For example, a recent
study reported that having college students engage
in emotional regulation strategies while performing
a set-switching laboratory task, which indexed both
inhibitory control and set-shifting abilities, interfered
most with the inhibitory control measure (Koay &
Meter, 2023). These findings were more pronounced
following a negative mood versus a positive mood
induction procedure. The modest fit of the SEM models
may also reflect the limitation of assessing executive
functioning in exercise from self-reports. Yet we are
encouraged that these self-reports were able to pre-
dict the dimensions of inhibitory control and cognitive
flexibility, despite all these barriers, to the extent they
did across two studies.

The present study measured executive functions using
indices of speed and accuracy for some tasks (flanker
task in Study 1, trail making B tasks in Study 2), but
it measured only accuracy for the backward span task
in Study 1 and only speed for the stop-signal task in
Study 2. There is now growing awareness, emerging
from studies of attentional control theory (Eysenck et
al., 2007), that the efficiency with which a task is com-
pleted (typically using speed measures) is somewhat
separable from the effectiveness of the task (typically
measured with accuracy). For example, anxiety and
threat have adverse effects on performance that are
revealed more clearly in measures of processing effi-
ciency than of effectiveness, leading to calls to include
both kinds of measures in studies of executive function
whenever possible (Brimmell et al., 2022). Future
research could profitably assess both efficiency and
effectiveness more even-handedly when comparing
across dimensions of executive function.

We may have also jettisoned the negatively worded
items too hastily. We did so after Study 1 because of
their bad initial fit to the measurement model and
because we needed to save some time for participants
in Study 2 to perform the new executive function tasks.
But this meant that Study 2 differed from Study 1 in
several ways and so different model outcomes in the
two studies could not be interpreted cleanly. Future
research may profit from replicating Study 1 proce-
dures in full with an independent set of participants
and by including all 30 items (or even more if time
allows) in a replication of Study 2.

Our trail making B task in Study 2 was a novel imple-
mentation on a computer screen of a very popular pen-
cil and paper test. In our version of it, participants did
not need to trace the region of space between symbols,
but simply made a mouse click on each of the symbols
in sequence. This may have made the task more of a
visual search and less of tracing task than the tradi-
tional paper and pencil test. A full assessment of this
in future research will require a comparison between a
mouse tracking version of the task and the mouse click
version we employed.

J. Enns et al. Cognitively engaging exercise predicts executive functioning on laboratory tasks

CISS 9(1), 2024 Article 007 | 26



A fundamental limitation of the present study is that
we were only able to link regular exercise to two of
the three most widely discussed components of exec-
utive function: inhibitory control and cognitive flexi-
bility. In contrast, working memory was not identified
in our studies, despite our best attempts to use labo-
ratory tasks that have been closely aligned with this
component in past research (i.e., backward digit span
and trail making B). This may have been because our
exercise items were not sufficiently targeted to this
construct, despite our best efforts to use concepts and
phrases that are frequently used in the executive func-
tion literature. Or it may simply be the case that work-
ing memory is too overlapped with cognitive flexibility
during exercise. Yet another possibility is that the
working memory concept is not as accessible to self-
report, meaning that it contributes least to partici-
pants’ metacognitive awareness of their own abilities.
Future research will need to disentangle these possi-
bilities.

It is worth noting that the component that linked most
robustly to exercise — inhibitory control — was based
on three items that map most often onto the facets of
inhibitory control in the literature. These include item
1: “slowing down to avoid making mistakes,” which is
an essential aspect of the stop-signal task; item 3: “fil-
tering and ignoring distracting information,” which is
closely tied to the requirement of the flanker task; and
item 7: “pausing to double check what one is doing,”
which is the essential requirement for avoiding errors
on the trail making B task. This suggests that greater
success may come in the future by developing items
for the other two components that are more closely
tied to the requirements of the laboratory tasks used
to measure them. For example, one of the specific
requirements of the backward span digit task is that
multiple pieces of information must be rearranged
mentally before an action can be generated. Perhaps
an item referring specifically to “mentally rearranging
objects or symbols” would capture this commonality
between exercise activities and the laboratory task
used to measure working memory.

Finally, we acknowledge that the two-factor model of
exercise identified in this work is undoubtedly wrong
in many respects, even if it has been useful in showing
proof-of-concept support for the cognitive engage-
ment hypothesis. At a minimum, the present findings
reveal reliable associations between reports of execu-
tive function use in regular exercise and objective lab-
oratory tests of those functions. We offer these findings
as inspiration for future studies to refine.
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Table 2
Self-reported exercise history

< 1 month 0 0
1-3 months 11 17.6
4-6 months 11 8.4
7-9 months 9 5.7
> 9 months 69 68.3

Self-reported history of exercise in studies 1 and 2. Values indicate percentages of participants reporting exer-
cise history in months.

AppendixA

Study 1 Study 2
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Table 3
Mean ratings on all exercise items

SD

Inhibitory control
I1. slow down to avoid making mistakes 2.88 0.97
I2. care most about speed and performing quickly (R) 3.28 1.05
I3. filter and ignore distracting information 3.50 0.91
I4. decide what to do through impulse alone (R) 3.26 1.01
I5. practice self-control and discipline 3.74 0.93
I6. follow every action to completion (R) 2.23 0.84
I7. pause and double check what I am doing 2.96 1.08
I8. start and complete actions without thinking (R) 3.10 0.98
I9. anticipate making fast or sudden adjustments 3.20 1.09
I10. act without self restraint (R) 3.62 0.91
Cognitive flexibility
C1. adapt and change how things are done 3.50 0.88
C2. have a plan that I stringently follow (R) 2.74 0.96
C3. try to identify new techniques or strategies 3.52 0.97
C4. follow the same routine (R) 2.64 0.91
C5. practice creativity 2.83 1.11
C6. hold the same mindset from start to finish (R) 2.79 0.94
C7. encounter and solve new problems 3.06 1.08
C8. have little-to-no flexibility to modify what I do (R) 3.73 0.97
C9. rely on a diverse skillset 3.11 1.11
C10. think the same thoughts over and over (R) 3.01 0.93
Working memory
W1. pay attention to many things at the same time 3.12 1.09
W2. understand everything that is happening even when absent-minded (R) 2.68 0.90
W3. make predictions about what will happen next 3.52 0.97
W4. avoid time-keeping (R) 3.00 1.12
W5. connect and combine different ideas 3.17 1.07
W6. do not care about the order in which things happen (R) 3.09 1.01
W7. multitask 2.84 1.22
W8. disengage from what is happening around me (R) 2.84 0.98
W9. monitor what is happening on a second-to-second basis 2.96 1.05
W10. focus all my attention entirely on one thing before moving onto the next
(R) 2.78 1.04

Individual mean ratings and standard deviations for the original 30 exercise items in study 1.

Exercise measurement item Mean
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Table 4
Factor loadings for all exercise items

I1. slow down to avoid making mistakes .38a

I2. care most about speed and performing quickly (R) -.20
I3. filter and ignore distracting information .59
I4. decide what to do through impulse alone (R) -.11
I5. practice self-control and discipline .54
I6. follow every action to completion (R) -.63
I7. pause and double check what I am doing .50
I8. start and complete actions without thinking (R) .05
I9. anticipate making fast or sudden adjustments .30
I10. act without self restraint (R) -.08
C1. adapt and change how things are done .65a

C2. have a plan that I stringently follow (R) -.28
C3. try to identify new techniques or strategies .66
C4. follow the same routine (R) .29
C5. practice creativity .67
C6. hold the same mindset from start to finish (R) -.19
C7. encounter and solve new problems .69
C8. have little-to-no flexibility to modify what I do (R) .29
C9. rely on a diverse skillset .70
C10. think the same thoughts over and over (R) -.04
W1. pay attention to many things at the same time .33a

W2. understand everything that is happening even when absent-
minded (R) -.28

W3. make predictions about what will happen next .60
W4. avoid time-keeping (R) -.36
W5. connect and combine different ideas .72
W6. do not care about the order in which things happen (R) -.08
W7. multitask .17
W8. disengage from what is happening around me (R) -.04
W9. monitor what is happening on a second-to-second basis .36
W10. focus all my attention entirely on one thing before moving onto
the next (R) -.34

Item-to-factor loadings for the original 30 exercise items and the three-factor model in study 1. Bolded items
denote statistical significance (p < .05). Factor I = Inhibition, C = Cognitive flexibility, W = Working memory.
aIndicator item

Exercise measurement item I C W
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Table 5
Factor loadings for best-fitting reduced model in study 1

I1. slow down to avoid making mistakes .60
I3. filter and ignore distracting information .47
I7. pause and double check what I am doing .70
C1. adapt and change how things are donea .63
C3. try to identify new techniques or strategies .64
C5. practice creativity .72
C7. encounter and solve new problems .70
C9. rely on a diverse skillset .70
W3. make predictions about what will happen next .54
W5. connect and combine different ideas .74

Exercise item-loadings in a two-factor model in study 1. Bolded items denote statistical significance (p < .05).

Table 6
Factor loadings for best-fitting reduced model in study 2

I1. slow down to avoid making mistakes .61
I3. filter and ignore distracting information .43
I7. pause and double check what I am doing .75
C1. adapt and change how things are donea .69
C3. try to identify new techniques or strategies .72
C5. practice creativity .71
C7. encounter and solve new problems .83
C9. rely on a diverse skillset .79
W3. make predictions about what will happen next .59
W5. connect and combine different ideas .70

Exercise item-loadings in a two-factor model in study 2. Bolded items denote statistical significance (p < .05).

Factors

Exercise measurement item Inhibition Cognitive flexibility

Factors

Exercise measurement item Inhibition Cognitive flexibility
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